For citation:
Kozhevnikov A. V., Dudko G. M., Khivintsev Y. V., Sakharov V. K., Vysotskii S. L., Nikulin Y. V., Pavlov E. S., Khitun A. G., Filimonov Y. A. Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film. Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, vol. 28, iss. 2, pp. 168-185. DOI: 10.18500/0869-6632-2020-28-2-168-185
Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film
Subject. We studied the effect of magnetic field H direction on the spectrum of the output signals in a 4-port cross-shaped structure where magnetostatic surface waves (MSSW) are excited by an input transducer under the condition of the first-order parametric instability (three-magnon).
Objective. To detect the influence of nonreciprocal effects on the development of parametric instability of spin waves (SW) in tangentially magnetized multiport microstructures based on films of yttrium iron garnet (YIG).
Methods. The experiments were carried out for a cross structure from YIG film with the thickness d ≈ 3.8 mm, in the form of two orthogonal waveguides having a width w ≈500 mm and a length L ≈3 mm with the SW wire antennas placed at the ends of the waveguides, where one of antennas on the transversely magnetized waveguide was considered as an input.
Results. It has been found that at the output antennas located near the ends of the longitudinally magnetized waveguide and oriented perpendicular to magnetic field, the SW spectra are qualitatively different and nonreciprocal with respect to the field direction H or to the change in the propagation direction of the MSSW pumping signal.
Discussion. The observed effect is associated with the nonreciprocal character of propagation of both the pumping wave and waves generated at parametric instability condition.
- Damon R. W. and Eshbach J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids, 1961, vol. 19, pp. 308–320. doi:10.1016/0022-3697(61)90041-5
- Gurevich А.G., Melkov G.А. Magnetization Oscillations and Waves. CRC Press. Boca Raton, 1996, 464 p.
- Schneider T., Serga A. A., Neumann T., Hillebrands B., and Kostylev M. P. Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B. 2008, vol. 77, p. 214411. doi:10.1103/PhysRevB.77.214411
- Demidov V.E., Kostylev M.P., Rott K., Krzysteczko P., Reiss G., Demokritov S.O. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett., 2009, vol. 95, p. 112509. doi:10.1063/1.3231875
- Sekiguchi K., Yamada K., Seo S.M., Lee K.J., Chiba D., Kobayashi K., Ono T. Nonreciprocal emission of spin-wavepacket in FeNi film. Appl. Phys. Lett. 2010, vol. 97, p. 022508. doi:10.1063/1.3464569
- Deorani P., Kwon J.H., Yang H. Nonreciprocity engineering in magnetostatic spin waves. Current Applied Physics, 2014, vol. 14, p. S129. doi:10.1016/j.cap.2013.11.008
- Shibata K., Kasahara K., Nakayama K., Kruglyak V.V., Aziz M.M., Manago T. Dependence of non-reciprocity in spin waveexcitation on antenna configuration. J. Appl. Phys., 2018, vol. 124, no. 2, p. 43901. doi:10.1063/1.5068722
- Lisenkov I., Kalyabin D., Osokin S., Klos J.W., Krawczyk M., Nikitov S. Nonreciprocity of edge modes in 1D magnonic crystal. JMMM, 2015, vol. 46, no. 43, pp. 313–319. doi:10.1016/j.jmmm.2014.10.073
- Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Yu.A., Kalyabin D.V., Lisenkov I.V., Nikitov S.A. Nonreciprocity of spin waves in metallized magnonic crystal. New Journal of Physics, 2013, vol. 15, p. 113023.
- Vysotskii, S.L., Nikitov, S.A., Pavlov, E.S. et al. Bragg resonances of magnetostatic surface waves in a ferrite–magnonic-crystal–dielectric–metal structure. J. Commun. Technol. Electron., 2013, vol. 58, no. 4, pp. 347–352 . doi.org/10.1134/S1064226913040165
- Beginin E.N., Filimonov Yu.A., Pavlov E.S., Vysotskii S.L., Nikitov S.A. Bragg resonances of magnetostatic surface spin waves in a layered structure: magnonic crystal–dielectric–metal. Appl. Phys. Lett., 2012, vol. 100, p. 252412.
- Vysotsky S.L., Beginin E.N., Nikitov S.A., Pavlov E.S., Filimonov Yu.A. Effect of ferrite magnonic crystal metallization on Bragg resonances of magnetostatic surface waves. Technical Physics Letters, 2011, vol. 37, no. 11, pp. 1024–1026.
- Jamali M., Kwon J. H., Seo S.-M., Lee K.-J., Yang H. Spin wave nonreciprocity for logic device applications. Sci. Rep., 2013, vol. 3, 03160.
- Sato, N. Sekiguchi K., and Nozaki Y. Electrical demonstration of spin-wave logic operation. Appl. Phys. Express, 2013, vol. 6, 063001. doi:10.7567/APEX.6.063001
- Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials. IEEE Trans. Microwave Theory Tech., 2002, vol. 50, p. 721. doi:10.1109/22.989957
- Wu J., Yang X., Beguhn, S. Lou J., and Sun N.X. Nonreciprocal Tunable Low-Loss Bandpass Filters With Ultra-Wideband Isolation Based on Magnetostatic Surface Wave. IEEE Trans. Microwave Theory Tech. 2012, vol. 60, p. 3959. doi:10.1109/TMTT.2012.2222661
- Harris V.G. Modern Microwave Ferrites. IEEE Trans. Magn., 2012, vol. 48, p. 1075. doi:10.1109/TMAG.2011.2180732
- Vugalter G. A. Korovin A.G. Total internal reflection of backward volume magnetostatic waves and its application for waveguides in ferrite films. J. Phys. D: Appl. Phys. 1998, vol. 31, pp. 1309–1319. doi:10.1088/0022-3727/31/11/004
- Vugalter G.A., Korovin A.G. Total internal reflection of backward volume magnetostatic waves from the metallized area of ferrite films. Technical Physics Letters, 1989, vol. 15, no. 21, pp. 73–76.
- Vashkovsky A. V., Lock E. H. Properties of backward electromagnetic waves and negative reflection in ferrite films. Phys. Usp. 2006, vol. 49, pp. 389–399. doi:10.1070/PU2006v049n04ABEH005807
- Madami M., Khivintsev Y., Gubbiotti G., Dudko G., Kozhevnikov A., Sakharov V., Stal’makhov A., Khitun A., and Filimonov Y. Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer. Appl. Phys. Lett., 2018, vol. 113, p. 152403. doi:10.1063/1.5050347
- Parekh J.P., Tuan H.S. and Desai A. Theory of MSSW convolution. Proceedings of the IEEE 1987 / Ultrasonics Symposium. Denver. Colorado. USA. 1987, pp. 217–220. doi:10.1109/ULTSYM.1987.198957
- Kazakov G.T., Pylaev E.S. Kombinacionnoe preobrazovanie chastoty vstrechnyh magnitostaticheskih voln s vozbuzhdeniem svrhsvetovyh voln namagnichivanija. Pisma v ZhTF, 1983, vol. 9, no. 20, p. 1240 (in Russian).
- Kozhevnikov А.V., Khivintsev Y.V., Sakharov V.К., Dudko G.М., Vysotskii S.L., Nikulin Y.V., Pavlov Е.S., Filimonov Y.А., Khitun А.G. The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, no. 3, pp. 9–32. doi:10.18500/0869-6632-2019-27-3-9-32
- O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples. J. Appl. Ptys., 1978, vol. 49, pp. 4886–4895. doi:10.1063/1.325522
- Dudko G.M., Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V., Vysotskii S.L., Seleznev M.E., Filimonov Y.A., Khitun A.G. Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films. Izvestiya VUZ. Applied nonlinear dynamics, 2019, vol. 27, no. 2, pp. 39–60. doi:10.18500/0869-6632-2019-27-2-39-60
- Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. Springer Science+Business Media, LLC 2009. LCCN: 2008936559. 354 p. https://doi.org/10.1007/978-0-387-77865-5
- Mednikov A.M. Nelineynyye effekty pri rasprostranenii poverkhnostnykh spinovykh voln v plenkakh YIG. FTT, 1981, vol. 23, iss. 1, pp. 242–245 (in Russian).
- Temiryazev A.G. Mekhanizm preobrazovanija poverhnostnoj magnitostaticheskoj volny v uslovijah trehmagnonnogo raspada. FTT, 1987, vol. 29, iss. 2, pp. 313–319 (in Russian).
- Polzikova N.I., Raevskii A.O., Temiryazev A.G. Vlilanie obmennogo vzaimodejstvija na granitsu trehmagnonnogo raspada volny Damona–Eshbacha v tonkih plenkah YIG. FTT, 1984, vol. 26, iss. 11, pp. 3506–3508 (in Russian).
- Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State (Springer), 1997, vol. 39, iss. 2, pp. 288–295.
- Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrie films. Journ. of Exper. and Theor. Phys. (AIP), 1999, vol. 88, no. 1, pp. 174–181. doi:10.1134/1.558780
- Melkov G.A., Sholom S.V. Parametric excitation of spin waves by a surface magnetostatic wave. Sov. Phys. JETP (AIP), 1989, vol. 69, no. 2, p. 403.
- Vashkovskiy A.V., Stal’makhov V.S., Sharayevskiy Yu.P. Magnitostaticheskiye volny v elektronike sverkhvysokikh chastot. Izdatel’stvo Saratovskogo Universiteta, 1993. 311 p. (in Russian).
- L’vov V.S. Nelineynyye spinovyye volny. M.: Nauka, 1987. 270 p. (in Russian)
- Demokritov S.O., Demidov V.E., Dzyapko O., Melkov G.A., Serga A.A., Hillebrands B., Slavin A.N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature V., 2006, vol. 443, pp. 430–433. doi:10.1038/nature05117
- Bir A.S., Grishin S.V. Generation of dark multisoliton complexes in a magnonic ring resonator with dispersion management and competing nonlinear spin-wave interactions. Pis’ma v Zh. Eksper. ` Teoret. Fiz., 2019, vol. 110, iss. 5, pp. 348–353. doi:10.1134/S0370274X19170120
- 1947 reads