ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ginzburg N. S., Petelin M. I. Mode competition and cooperation in free-electron lasers. Izvestiya VUZ. Applied Nonlinear Dynamics, 1994, vol. 2, iss. 6, pp. 3-26.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.633

Mode competition and cooperation in free-electron lasers

Autors: 
Ginzburg Naum Samuilovich, Institute of Applied Physics of the Russian Academy of Sciences
Petelin Mihail Ivanovich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

Mode interaction in free-electron lasers operating under homogeneous and inhomogeneous broading of amplification line is reviewed. Analytical and numerical methods demonstrate that in the case of homogeneous broading with increase of electron current the following stages take place successively: regime a) single mode oscillations, b) periodical selfmodulation (mode phase-locking), с) chaotic selfmodulation. It is important that in the last regime electron efficiency may essentially exceed efficiency of the single-mode operation regime. The enhancement is caused by the effect of stochastic particles deceleration in the multi-frequency chaotic radiated field, when an electron, having lost some energy to one mode, is trapped in synchronism by another mode, which corresponds to a lower phase velocity. It is shown that in the case of the monochromatic signal wave similar mechanism of deceleration and efficiency enhancement may be realized using incoherent pump wave or stochastic undulators.

Key words: 
Reference: 
  1. Deacon DAG, Elias LR, Madey JMJ, Ramian GJ, Schwettman HA, Smith TI. First operation of free-electron laser. Phys. Rev. Lett. 1977;38(16):892-894. DOI: 10.1103/PhysRevLett.38.892
  2. Roberson CW, Sprangle P. A review of free-electron lasers. Phys. Fluids. 1989;1(1):3-42. DOI: 10.1063/1.859102
  3. Bratman VL, Ginzburg NS, Petelin MI. Common properties of free electron lasers. Optics Commun. 1979;30(3):409-412. DOI: 10.1016/0030-4018(79)90382-1
  4. Bratman VL, Ginzburg NS, Petelin МI. Free electron lasers: prospects for the promotion of classical electron generators into short-wave bands. Bulletin of the Russian Academy of Sciences: Physics. 1980;44(8):1593-1602.
  5. Bratman VL, Ginzburg NS, Kovalev NF, Nusinovich GS, Petelin МI. General properties of short-wave devices with long-term inertial grouping of electrons. In: Relativistic High-Frequency Electronics. Vol. 1. Gorky: Institute of Applied Physics AS USSR; 1979. P. 249-275.
  6. Gover A, Sprangle Р. A unified theory of magnetic brems strahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cherenkov-Smith-Purcell free-electron laser. IEEE J. Quant. Electron. 1981;17(7):1196-1215. DOI: 10.1109/JQE.1981.1071257
  7. Ruell D, Takens F. On the nature of turbulence. Comm. Math. Phys. 1971;20:167-192. DOI: 10.1007/bf01646553
  8. Feigenbaum MJ. Quantitative universality for a class of nonlinear transformation. J. Stat. Phys. 1978;19(1):25-52. DOI: 10.1007/bf01020332
  9. Rabinovich МI. Stochastic self-oscillations and turbulence. Sov. Phys. Usp. 1978;21(5):443-469. DOI: 10.1070/PU1978v021n05ABEH005555
  10. Rabinovich МI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. M.: Nauka; 1992. 432 p.
  11. Kuznetsov SP. Complex dynamics of oscillators with delayed feedback (review). Radiophys. Quantum Electron. 1982;25(12):996-1009. DOI: 10.1007/BF01037379
  12. Kadomtsev BB. Collective Phenomena in the Plasma. М: Nauka; 1976. 238 p.
  13. Tsytovich VN. Nonlinear Effects in Plasma. М.: Nauka; 1967. 286 p.
  14. Shapiro VD, Shevchenko VI. Wave-particle interaction in nonequilibrium media. Radiophys Quantum Electron. 1976;19(5):543-560. DOI: 10.1007/BF01034470
  15. Yariv А. Quantum Electronics. М.: Sovetskoe Radio; 1980. 487 p.
  16. Fain VM, Khanin YaI. Quantum Radio Physics. М.: Sovetskoe Radio; 1965. 608 p.
  17. Lamb WE. Theory of optical masers. Phys. Rev. A. 1964;134(6A):A1429-A1450. DOI: 10.1103/PhysRev.134.A1429
  18. Bespalov VI, Kubarev VA, Pasmanik GА. Stimulated Rayleigh light scattering A review. Radiophys Quantum Electron. 1970;13(10):1103-1130. DOI: 10.1007/BF01031003
  19. Datolli G, Reniery А. The free-electron laser single-particale multimode classical theory. Il Nouvo Cimento B. 1981;61:153-180. DOI: 10.1007/BF02721321
  20. Nusinovich GS. Interaction of modes in free-electron lasers. Tech. Phys. Lett. 1980;6(14):848-852.
  21. Ginzburg NS, Shapiro MA. Quasi-linear theory of multimode FELs with an inhomogeneous frequency broadening. Optics Commun. 1982;40(3):215-218. DOI: 10.1016/0030-4018(82)90264-4
  22. Al-Abawi H, Hopf FA, Moore GT, Scully МО. Coherent transients in the free-electron laser: laser lethargy and coherence brightening. Optics Commun. 1979;30(2):235-238. DOI: 10.1016/0030-4018(79)90085-3
  23. Hopf FA, Kufer TG, Moore GT, Scully МО. Free-electron laser from a laser physics perspective. In: Free-Electron Generators of Coherent Radiation. Physics of Quantum Electronics. Vol.7. Reading: Addison-Wesley; 1980. P. 31.
  24. Colson WB. Optical pulse evolution in the Stanford free-electron laser and in tapered wiggler. In: Free-Electron Generators of Coherent Radiation. Physics of Quantum Electronics. Vol.9. Reading: Addison-Wesley; 1982. P. 457.
  25. Colson WB, Richardson JL. Multimode theory of the free-electron laser oscillators. Phys. Rev. Lett. 1983;50(14):1050-1053. DOI: 10.1103/PhysRevLett.50.1050
  26. Colson WB, Freedman RA. Synchrotron instability for long pulses in free-electron laser oscillators. Optics Commun. 1983;46(1):37-42. DOI: 10.1016/0030-4018(83)90026-3
  27. Mani SA, Korff DA, Blimnell J. Resonator mode structure. In: Free-Electron Generators of Coherent Radiation. Physics of Quantum Electronics. Vol.9. Reading: Addison-Wesley; 1982. P. 557.
  28. Bogomolov YaL, Braman VL, Ginzburg NS, Petelin MI, Yunakovsky AD. Nonstationary generation in free-electron lasers. Optics Commun. 1981;36(3):209-212. DOI: 10.1016/0030-4018(81)90359-X
  29. Ginzburg NS, Petelin MI. Multifrequency generation in free-electron lasers with quasi-optical resonators. Int. J. Electron. 1985;59(3):291-314. DOI: 10.1080/00207218508920701
  30. Ginzburg NS. On the use of incoherent pumping in free electron lasersn. Tech. Phys. Lett. 1984;10(10):584-588.
  31. Vainshtein LА. General theory of resonant electronic autogenerators. In: High-Power Electronics. Iss. 6. М.: Nauka; 1969. P.84.
  32. Petelin MI. Electronic selection of mods in gyrotrons. In: Gyrotron. Gorky: Institute of Applied Physics AS USSR Publishing; 1981. P. 77-85.
  33. Ginzburg NS, Petelin МI, Sergeev AS. On the mechanism of selfmodulation of radiation in free-electron lasers. Optics Commun. 1985;55(4):283-288. DOI: 10.1016/0030-4018(85)90345-1
  34. Ginzburg NS, Kuznetsov SP. Periodic and stochastic automodulation of radiation in electronic generators with distributed interaction. In: Relativistic High-Ffrequency Electronics. Iss. 2. Gorky: Institute of Applied Physics AS USSR Publishing; 1981. P. 101.
  35. Bogomolov YaL, Yunakovsky AD. Numerical simulation of nonstationary processes in free-electron lasers. J. Comp. Phys. 1985;58(1):80-95. DOI: 10.1016/0021-9991(85)90158-5
  36. Levush B, Antonsen TM. Mode competition and suppression in free-electron laser oscillator. Phys. Fluids. 1989;1(5):1097-1108. DOI: 10.1063/1.858980.
  37. Levush B, Antonsen TM. Mode competition and control in free-electron laser oscillators. Phys. Rev. Lett. 1989;62(13):1448-1491. DOI: 10.1103/PhysRevLett.62.1488.
  38. Chaix P. FEL theory and experiment in Bruyeres-le-Chatel. In: 16-th Int. FEL Conference. Stanford, 1994. Abstr. P. 90.
  39. Kroll NM, Morton PhL, Rosenbluth ММ. Enhanced energy extraction in free-electron lasers by means of adiabatic decrease of resonant energy. In: Free-Electron Generators of Coherent Radiation. Physics of Quantum Electronics. Vol. 7. Reading: Addison-Wesley; 1980. P.113.
  40. Sprangle P, Tang CM, Manheumer WM. Nonlinear theory of free-electron laser and efficiency enhancement. Phys. Rev. A. 1980;21(1):302-318. DOI: 10.1103/PhysRevA.21.302
Received: 
02.11.1994
Accepted: 
18.03.1995
Published: 
06.06.1995