ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Klinshov V. К., Virchenko A. Y., Vanag K. V. Modelling mixing phenomenon in autocatalytic reaction by probability cellular automat. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 3, pp. 97-106. DOI: 10.18500/0869-6632-1996-4-3-97-106

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
541

Modelling mixing phenomenon in autocatalytic reaction by probability cellular automat

Autors: 
Klinshov Vladimir Карлович, Immanuel Kant Baltic Federal University
Virchenko Anton Yurevich, Lomonosov Moscow State University
Vanag Konstantin Vladimirovich, Lomonosov Moscow State University
Abstract: 

A probability cellular automaton is suggested for modeling the stirring effect in an autocatalytic multiplication of activator аt the presence of inhibitor. The probability cellular automaton model simulates turbulent stirring, molecular diffusion, and chemical reactions. The probability cellular automaton model allows us to describe the experimental dependence of the induction period of autocatalytic reaction on stirring intensity (stirring effect). The hypothesis about the increasing the magnitude of the stirring effect with the slowing down the rate of the system approach to the critical point is confirmed. It is shown that the stirring effect is connected with the emergence of the microheterogeneities (nuclei), with the nonlinearity of chemical reactions, and with the effect of turbulent stirring rate on the magnitude of fluctuations in reagent concentrations.

Key words: 
Acknowledgments: 
The research described in this publication was made possible in part by a grant from the International Science Foundation MQSZOO and in part by epanriny 93-03-4090 from the Russian Foundation for Basic Research.
Reference: 
  1. Hlavacova J, Sevcik P. Coherence between the stirring effects in bimolecular reactions and the Belousov - Zhabotinsky reaction in the closed batch reactor. J. Phys. Chem. 1994;98:6304-6307.
  2. Deering WD, West BJ. A model of turbulent mixing in the А + B — 0 reaction. J. Stat. Physics. 1991;65:1247-1260. DOI: 10.1007/BF01049610.
  3. Epstein IR. The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature. 1995;374(6520):321-327. DOI:  10.1038/374321a0.
  4. Noszticzius Z, Bodnar Z, Garamszegi L, Wittmann M. Hydrodynamic turbulence and diffusion-controlled reactions. Simulation of the effect of stirring on the oscillating Belousov - Zhabotinsky reaction with the Radicalator model. J. Phys. Chem. 1991;95:6575-6580. DOI: 10.1021/j100170a038.
  5. Ruoff P. Excitations induced by fluctuations: An explanation of stirring effects and chaos in closed anaerobic classical Belousov - Zhabotinsky systems. J. Phys. Chem. 1993;97(24):6405-6411. DOI: 10.1021/j100126a014.
  6. Menzinger M, Jankowski P. Concentration fluctuations and stirring effects in the Belousov - Zhabotinsky reaction. J. Phys. Chem. 1990;94(10):4123-4126. DOI: 10.1021/j100373a045.
  7. Vanag VK, Ait АO. Effect of mixing on photoinduced kinetic phase transition in the Briggs-Rauscher reaction under non-flow reactor conditions. Rus. J. Phys. Chem. 1993;67(11):2246.
  8. Epstein IR. Nature. 1990;346:16-17. DOI: 10.1038/346016a0.
  9. Horsthemke W, Kondepudi DK, editors. Fluctuations and Sensitivity in Nonequilibrium Systems. Berlin: Springer; 1984. 276 p. DOI: 10.1007/978-3-642-46508-6.
  10. Vanag VK, Alfimov MV. Effects of stirring on photoinduced phase transition in а batch-mode Briggs - Rauscher reaction. J. Phys. Chem. 1993;97(9):1884-1890. DOI: 10.1021/j100111a028.
  11. Lopez-Tomas L, Sagues F. New features of stirring sensitivities of the Belousov - Zhabotinsky reaction. J. Phys. Chem. 1991;95(2):701-705. DOI: 10.1021/j100155a039.
  12. Sagues F, Sancho JM. A Langevin approach to the macroscopic stochasticity of chemical systems. J. Chem. Phys. 1988;89:3793-3798. DOI: 10.1063/1.454903.
  13. Puhl А, Altares V, Nicolis G. Imperfect turbulent mixing in chemical reactors: Coupling between chemical and hydrodynamical modes. Phys. Rev. A. 1988;37(8):3039-3045. DOI: 10.1103/physreva.37.3039.
  14. Horsthemke W, Hannon L. Nonequilibrium chemical instabilities in continuous flow stirred tank reactor: The effect of stirring. J. Chem. Phys. 1984;81(10):4363-4368. DOI: 10.1063/1.447447.
  15. Taguchi Y-H, Takayasu H. A new mesoscopic scale model for simulating fluid turbulence: the lattice vortex tube model. Physica D. 1993;69(3-4):366-379. DOI: 10.1016/0167-2789(93)90100-F.
  16. Crutchfield JР, Hanson JЕ. Turbulent pattern bases for cellular automata. Physica D. 1993;69(3-4):279-301. DOI: 10.1016/0167-2789(93)90092-F.
  17. Oono Y, Kohmoto M. Discrete model of chemical turbulence. Phys. Rev. Lett. 1985;55(27):2927-2931. DOI: 10.1103/PhysRevLett.55.2927.
  18. Malinetskii GG, Shakaeva MS. Cellular automata in mathematical modeling of oscillatory chemical reactions on the surface. Rus. J. Phys. Chem. 1995;69(8):1523.
  19. Gerchardt M, Schuster K, Tyson JJ. A cellular automaton model of excitable media including curvature and dispersion. Science. 1990;247(4950):1563-1566. DOI: 10.1126/science.2321017.
  20. Field RJ, Burger M, editors. Oscillations and Traveling Waves in Chemical Systems. N.Y.: Wiley; 1985. 681 p.
  21. Vanag VK, Melikhov DР. Asymmetrical concentration fluctuations in the autocatalytic bromate-bromide-catalyst reaction and in the oscillatory Belousov -Zhabotinsky reaction in closed reactor: stirring effects. J. Phys. Chem. 1995;99(48):17372-17379. DOI: 10.1021/j100048a011.
  22. Wolfram S, editor. Theory and Applications of Cellular Automata. Singapore: World Scientific; 1987. 560 p.
  23. Landau LD, Lifshits EM. Theoretical physics. Vol.6. Hydrodynamics. М.: Nauka; 1986. 736 p.
  24. Tachiya М. Stochastic and Diffusion Models of Reactions in Micelles and Vesicles. In: Freeman CR, editor. Kinetics of Nonhomogeneous Processes. N.Y.: Wiley; 1987. P. 575-650.
Received: 
14.12.1995
Accepted: 
15.08.1996
Published: 
15.12.1996