ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlova O. N., Pavlov A. N. Multifractal description of nephrons dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 2, pp. 3-14. DOI: 10.18500/0869-6632-2011-19-2-3-14

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 158)
Language: 
Russian
Article type: 
Article
UDC: 
57.087

Multifractal description of nephrons dynamics

Autors: 
Pavlova Olga Nikolaevna, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University
Abstract: 

The dynamics of functional units of the kidney in normotensive and hypertensive rats is studied based on the method of multifractal formalism. Rhythmic processes in a nephron’s mathematical model and in experimental data of tubular pressure are analyzed. Changes in singularity spectra for nephronic tubular processes in a hypertension state are illustrated that include an increase of multifractality degree and a decrease of correlations. The corresponding changes are caused by a stronger degree of chaotic oscillations for tubular pressure in nephrons of hypertensive rats. 

Reference: 
  1. Mandelbrot BB. The Fractal Geometry of Nature. San Francisco: W.H. Freeman and company; 1982. 480 p.
  2. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33(2):1141–1151. DOI: 10.1103/PhysRevA.33.1141.
  3. Tel T. Fractals, multifractals, and thermodynamics. Z. Naturforsh. 1988;43(12):1154–1174. DOI: 10.1515/zna-1988-1221.
  4. Schroeder M. Fractals, Chaos, Power Laws. Dover Publications; 2009. 448 p.
  5. Mandelbrot BB. Fractals and Multifractals: Noise, Turbulence and Galaxies. New York: Springer-Verlag; 1989.
  6. Eisenberg E, Bunde A, Havlin S, Roman HE. Range of multifractality for random walks on random fractals. Phys. Rev. E. 1993;47(4):2333–2335. DOI: 10.1103/PhysRevE.47.2333.
  7. Drager J. Multifractal features of random walks and localized vibrational excitations on random fractals: dependence on the averaging procedures. Phys. Rev. E. 1996;54(5):4596–4602. DOI: 10.1103/PhysRevE.54.4596.
  8. Arneodo A, Decoster N, Roux SG. Intermittency, log-normal statistics, and multifractal cascade process in high-resolution satellite images of cloud structure. Phys. Rev. Lett. 1999;83(6):1255–1258. DOI: 10.1103/PhysRevLett.83.1255.
  9. Chabra A, Meneveau C, Jensen RV. Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A. 1989;40(9):5284–5294. DOI: 10.1103/PhysRevA.40.5284.
  10. Benzi R, Paladin G, Parisi G, Vulpiani A. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A. 1984;17(18):3521–3532. DOI: 10.1088/0305-4470/17/18/021.
  11. Strait BJ, Dewey TG. Multifractals and decoded walks: applications to protein sequence correlations. Phys. Rev. E. 1995;52(6):6588–6592. DOI: 10.1103/PhysRevE.52.6588.
  12. Muzy JF, Bacry E, Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991;67(25):3515–3518. DOI: 10.1103/PhysRevLett.67.3515.
  13. Muzy JF, Bacry E, Arneodo A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E. 1993;47(2):875–884. DOI: 10.1103/PhysRevE.47.875.
  14. Frish U, Parisi G. Fully developed turbulence and intermittency. In: Ghil M, Benzi R, Parisi G, editors. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. North-Holland, New York; 1985. P. 71.
  15. Gagne Y, Hopfinger E, Frisch U. A new universal scaling for fully developed turbulence: the distribution of velocity increments. In: Coullet P, Huerre P, editors. New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Nonequilibrium. US: Springer; 1989. P. 315–319.
  16. Ivanov PC, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–465. DOI: 10.1038/20924.
  17. Arneodo A, Aubenton-Carafa YD, Audit B, Bacry E, Muzy JF, Thermes C. What can we learn with wavelets about DNA sequences? Physica A. 1998;249(1–4):439–448. DOI: 10.1016/S0378-4371(97)00504-9.
  18. Stanley HE, Nunes Amaral LA, Goldberger AL, Havlin S, Ivanov PC, Peng CK. Statistical physics and physiology: monofractal and multifractal approaches. Physica A. 1999;270(1–2):309–324. DOI: 10.1016/S0378-4371(99)00230-7.
  19. Nunes Amaral LA, Ivanov PC, Aoyagi N, Hidaka I, Tomono S, Goldberger AL, Stanley HE, Yamamoto Y. Behavioral-independent features of complex heartbeat dynamics. Phys. Rev. Lett. 2001;86(26):6026–6029. DOI: 10.1103/physrevlett.86.6026.
  20. Ivanov PC, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos. 2001;11(3):641–652. DOI: 10.1063/1.1395631.
  21. Marrone A, Polosa AD, Scioscia G, Stramaglia S, Zenzola A. Multiscale analysis of blood pressure signals. Phys. Rev. E. 1999;60(1):1088–1091. DOI: 10.1103/physreve.60.1088.
  22. Thurner S, Feurstein MC, Teich MC. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys. Rev. Lett. 1998;80(7):1544–1547. DOI: 10.1103/PhysRevLett.80.1544.
  23. Pavlov AN, Anishchenko VS. Multifractal analysis of complex signals. Phys. Usp. 2007;50(8): 819–834. DOI: 10.1070/PU2007v050n08ABEH006116.
  24. Pavlov AN, Ziganshin AR, Klimova OA. Multifractal characterization of blood pressure dynamics: stress-induced phenomena. Chaos, Solitons and Fractals. 2005;24(1):57–63. DOI: 10.1016/j.chaos.2004.09.025.
  25. Daubechies I. Ten Lectures on Wavelets. Philadelphia: S.I.A.M.; 1992. 350 p. DOI: 10.1137/1.9781611970104.
  26. Mallat SG. A Wavelet Tour of Signal Processing. New York: Academic Press; 1998. 805 p. DOI: 10.1016/B978-0-12-374370-1.X0001-8.
  27. Addison PS. The Illustrated Wavelet Transform Handbook: Applications in Science, Engineering, Medicine and Finance. Bristol, Philadelphia: IOP Publishing; 2002. 472 p.
  28. Kaiser G. A Friendly Guide to Wavelets. Boston: Birkhauser; 1994. 300 p. DOI: 10.1007/978-0-8176-8111-1.
  29. Astaf’eva NM. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11):1085–1108. DOI: 10.1070/PU1996v039n11ABEH000177.
  30. Koronovskiy AA, Khramov AE. Continuous Wavelet Analysis and Its Applications. Moscow: Fizmatlit; 2003. 176 p. (in Russian).
  31. Marsh DJ, Sosnovtseva OV, Pavlov AN, Yip KP, Holstein-Rathlou NH. Frequency encoding in renal blood flow regulation. American Journal of Physiology. Regul. Integr. Comp. Physiol. 2005;288(5):R1160–R1167. DOI: 10.1152/ajpregu.00540.2004.
  32. Sosnovtseva OV, Pavlov AN, Mosekilde E, Holstein-Rathlou NH, Marsh DJ. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. Physiological Measurement. 2005;26(4):351–362. DOI: 10.1088/0967-3334/26/4/002.
  33. Pavlov AN, Makarov VA, Mosekilde E, Sosnovtseva OV. Application of wavelet-based tools to study the dynamics of biological processes. Briefings in Bioinformatics. 2006;7(4):375–389. DOI: 10.1093/bib/bbl041.
  34. Sosnovtseva OV, Pavlov AN, Mosekilde E, Yip KP, Holstein-Rathlou NH, Marsh DJ. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. American Journal of Physiology. Renal Physiology. 2007;293(5):F1545–F1555. DOI: 10.1152/ajprenal.00054.2007.
  35. Pavlov AN, Sosnovtseva OV, Pavlova ON, Mosekilde E, Holstein-Rathlou NH. Characterizing multimode interaction in renal autoregulation. Physiological Measurement. 2008;29(8):945–958. DOI: 10.1088/0967-3334/29/8/007.
  36. Sosnovtseva OV, Pavlov AN, Pavlova ON, Mosekilde E, Holstein-Rathlou NH. Characterizing the effect of L-name on intra- and inter-nephron synchronization. European Journal of Pharmaceutical Sciences. 2009;36(1):39–50. DOI: 10.1016/j.ejps.2008.10.019.
  37. Holstein-Rathlou NH, Marsh DJ. A dynamic model of renal blood flow autoregulation. Bull. Math. Biol. 1994;56(3):411–429. DOI: 10.1007/bf02460465.
  38. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6(3):280–287. DOI: 10.1063/1.166175.
  39. Mosekilde E. Topics in Nonlinear Dynamics: Applications to Physics, Biology and Economic Systems. World Scientific, Singapore; 1996. 392 p. DOI: 10.1142/3194.
  40. Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar–Kyoto rats. Acta Physiol. Scand. 1986;126(3):333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  41. Leyssac PP, Holstein-Rathlou NH. Tubulo-glomerular feedback response: Enhancement in adult spontaneously hypertensive rats and effects of anaesthetics. Pflugers Arch. 1989;413(3):267–272. DOI: 10.1007/bf00583540.
  42. Pavlov AN, Pavlova ON. Analysis of correlation properties of random processes using short signals. Tech. Phys. Lett. 2008;34(4):306–308. DOI: 10.1134/S1063785008040111.
  43. Pavlov AN, Sosnovtseva OV, Mosekilde E, Anishchenko VS. Extracting dynamics from threshold-crossing interspike intervals: possibilities and limitations. Phys. Rev. E. 2000;61(5):5033–5044. DOI: 10.1103/PhysRevE.61.5033.
  44. Postnov DE, Sosnovtseva OV, Mosekilde E, Holstein-Rathlou NH. Cooperative phase dynamics in coupled nephrons. Int. J. Modern Physics B. 2001;15(23):3079–3098. DOI: 10.1142/S0217979201007233.
  45. Pavlova ON, Pavlov AN, Anisimov AA, Nazimov AI, Sosnovceva OV. Synchronization of oscillations in the dynamics of ensembles of surface nephrons. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(1):14–24 (in Russian). DOI: 10.18500/0869-6632-2011-19-1-14-24.
Received: 
15.09.2009
Accepted: 
16.02.2010
Published: 
31.05.2011
Short text (in English):
(downloads: 100)