ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pavlova O. N., Pavlov A. N. Multifractal description of nephrons dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 2, pp. 3-14. DOI: 10.18500/0869-6632-2011-19-2-3-14

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 158)
Article type: 

Multifractal description of nephrons dynamics

Pavlova Olga Nikolaevna, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University

The dynamics of functional units of the kidney in normotensive and hypertensive rats is studied based on the method of multifractal formalism. Rhythmic processes in a nephron’s mathematical model and in experimental data of tubular pressure are analyzed. Changes in singularity spectra for nephronic tubular processes in a hypertension state are illustrated that include an increase of multifractality degree and a decrease of correlations. The corresponding changes are caused by a stronger degree of chaotic oscillations for tubular pressure in nephrons of hypertensive rats. 

  1. Mandelbrot BB. The Fractal Geometry of Nature. San Francisco: W.H. Freeman and company; 1982. 480 p.
  2. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33(2):1141–1151. DOI: 10.1103/PhysRevA.33.1141.
  3. Tel T. Fractals, multifractals, and thermodynamics. Z. Naturforsh. 1988;43(12):1154–1174. DOI: 10.1515/zna-1988-1221.
  4. Schroeder M. Fractals, Chaos, Power Laws. Dover Publications; 2009. 448 p.
  5. Mandelbrot BB. Fractals and Multifractals: Noise, Turbulence and Galaxies. New York: Springer-Verlag; 1989.
  6. Eisenberg E, Bunde A, Havlin S, Roman HE. Range of multifractality for random walks on random fractals. Phys. Rev. E. 1993;47(4):2333–2335. DOI: 10.1103/PhysRevE.47.2333.
  7. Drager J. Multifractal features of random walks and localized vibrational excitations on random fractals: dependence on the averaging procedures. Phys. Rev. E. 1996;54(5):4596–4602. DOI: 10.1103/PhysRevE.54.4596.
  8. Arneodo A, Decoster N, Roux SG. Intermittency, log-normal statistics, and multifractal cascade process in high-resolution satellite images of cloud structure. Phys. Rev. Lett. 1999;83(6):1255–1258. DOI: 10.1103/PhysRevLett.83.1255.
  9. Chabra A, Meneveau C, Jensen RV. Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A. 1989;40(9):5284–5294. DOI: 10.1103/PhysRevA.40.5284.
  10. Benzi R, Paladin G, Parisi G, Vulpiani A. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A. 1984;17(18):3521–3532. DOI: 10.1088/0305-4470/17/18/021.
  11. Strait BJ, Dewey TG. Multifractals and decoded walks: applications to protein sequence correlations. Phys. Rev. E. 1995;52(6):6588–6592. DOI: 10.1103/PhysRevE.52.6588.
  12. Muzy JF, Bacry E, Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991;67(25):3515–3518. DOI: 10.1103/PhysRevLett.67.3515.
  13. Muzy JF, Bacry E, Arneodo A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E. 1993;47(2):875–884. DOI: 10.1103/PhysRevE.47.875.
  14. Frish U, Parisi G. Fully developed turbulence and intermittency. In: Ghil M, Benzi R, Parisi G, editors. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. North-Holland, New York; 1985. P. 71.
  15. Gagne Y, Hopfinger E, Frisch U. A new universal scaling for fully developed turbulence: the distribution of velocity increments. In: Coullet P, Huerre P, editors. New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Nonequilibrium. US: Springer; 1989. P. 315–319.
  16. Ivanov PC, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–465. DOI: 10.1038/20924.
  17. Arneodo A, Aubenton-Carafa YD, Audit B, Bacry E, Muzy JF, Thermes C. What can we learn with wavelets about DNA sequences? Physica A. 1998;249(1–4):439–448. DOI: 10.1016/S0378-4371(97)00504-9.
  18. Stanley HE, Nunes Amaral LA, Goldberger AL, Havlin S, Ivanov PC, Peng CK. Statistical physics and physiology: monofractal and multifractal approaches. Physica A. 1999;270(1–2):309–324. DOI: 10.1016/S0378-4371(99)00230-7.
  19. Nunes Amaral LA, Ivanov PC, Aoyagi N, Hidaka I, Tomono S, Goldberger AL, Stanley HE, Yamamoto Y. Behavioral-independent features of complex heartbeat dynamics. Phys. Rev. Lett. 2001;86(26):6026–6029. DOI: 10.1103/physrevlett.86.6026.
  20. Ivanov PC, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos. 2001;11(3):641–652. DOI: 10.1063/1.1395631.
  21. Marrone A, Polosa AD, Scioscia G, Stramaglia S, Zenzola A. Multiscale analysis of blood pressure signals. Phys. Rev. E. 1999;60(1):1088–1091. DOI: 10.1103/physreve.60.1088.
  22. Thurner S, Feurstein MC, Teich MC. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys. Rev. Lett. 1998;80(7):1544–1547. DOI: 10.1103/PhysRevLett.80.1544.
  23. Pavlov AN, Anishchenko VS. Multifractal analysis of complex signals. Phys. Usp. 2007;50(8): 819–834. DOI: 10.1070/PU2007v050n08ABEH006116.
  24. Pavlov AN, Ziganshin AR, Klimova OA. Multifractal characterization of blood pressure dynamics: stress-induced phenomena. Chaos, Solitons and Fractals. 2005;24(1):57–63. DOI: 10.1016/j.chaos.2004.09.025.
  25. Daubechies I. Ten Lectures on Wavelets. Philadelphia: S.I.A.M.; 1992. 350 p. DOI: 10.1137/1.9781611970104.
  26. Mallat SG. A Wavelet Tour of Signal Processing. New York: Academic Press; 1998. 805 p. DOI: 10.1016/B978-0-12-374370-1.X0001-8.
  27. Addison PS. The Illustrated Wavelet Transform Handbook: Applications in Science, Engineering, Medicine and Finance. Bristol, Philadelphia: IOP Publishing; 2002. 472 p.
  28. Kaiser G. A Friendly Guide to Wavelets. Boston: Birkhauser; 1994. 300 p. DOI: 10.1007/978-0-8176-8111-1.
  29. Astaf’eva NM. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11):1085–1108. DOI: 10.1070/PU1996v039n11ABEH000177.
  30. Koronovskiy AA, Khramov AE. Continuous Wavelet Analysis and Its Applications. Moscow: Fizmatlit; 2003. 176 p. (in Russian).
  31. Marsh DJ, Sosnovtseva OV, Pavlov AN, Yip KP, Holstein-Rathlou NH. Frequency encoding in renal blood flow regulation. American Journal of Physiology. Regul. Integr. Comp. Physiol. 2005;288(5):R1160–R1167. DOI: 10.1152/ajpregu.00540.2004.
  32. Sosnovtseva OV, Pavlov AN, Mosekilde E, Holstein-Rathlou NH, Marsh DJ. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. Physiological Measurement. 2005;26(4):351–362. DOI: 10.1088/0967-3334/26/4/002.
  33. Pavlov AN, Makarov VA, Mosekilde E, Sosnovtseva OV. Application of wavelet-based tools to study the dynamics of biological processes. Briefings in Bioinformatics. 2006;7(4):375–389. DOI: 10.1093/bib/bbl041.
  34. Sosnovtseva OV, Pavlov AN, Mosekilde E, Yip KP, Holstein-Rathlou NH, Marsh DJ. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. American Journal of Physiology. Renal Physiology. 2007;293(5):F1545–F1555. DOI: 10.1152/ajprenal.00054.2007.
  35. Pavlov AN, Sosnovtseva OV, Pavlova ON, Mosekilde E, Holstein-Rathlou NH. Characterizing multimode interaction in renal autoregulation. Physiological Measurement. 2008;29(8):945–958. DOI: 10.1088/0967-3334/29/8/007.
  36. Sosnovtseva OV, Pavlov AN, Pavlova ON, Mosekilde E, Holstein-Rathlou NH. Characterizing the effect of L-name on intra- and inter-nephron synchronization. European Journal of Pharmaceutical Sciences. 2009;36(1):39–50. DOI: 10.1016/j.ejps.2008.10.019.
  37. Holstein-Rathlou NH, Marsh DJ. A dynamic model of renal blood flow autoregulation. Bull. Math. Biol. 1994;56(3):411–429. DOI: 10.1007/bf02460465.
  38. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6(3):280–287. DOI: 10.1063/1.166175.
  39. Mosekilde E. Topics in Nonlinear Dynamics: Applications to Physics, Biology and Economic Systems. World Scientific, Singapore; 1996. 392 p. DOI: 10.1142/3194.
  40. Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar–Kyoto rats. Acta Physiol. Scand. 1986;126(3):333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  41. Leyssac PP, Holstein-Rathlou NH. Tubulo-glomerular feedback response: Enhancement in adult spontaneously hypertensive rats and effects of anaesthetics. Pflugers Arch. 1989;413(3):267–272. DOI: 10.1007/bf00583540.
  42. Pavlov AN, Pavlova ON. Analysis of correlation properties of random processes using short signals. Tech. Phys. Lett. 2008;34(4):306–308. DOI: 10.1134/S1063785008040111.
  43. Pavlov AN, Sosnovtseva OV, Mosekilde E, Anishchenko VS. Extracting dynamics from threshold-crossing interspike intervals: possibilities and limitations. Phys. Rev. E. 2000;61(5):5033–5044. DOI: 10.1103/PhysRevE.61.5033.
  44. Postnov DE, Sosnovtseva OV, Mosekilde E, Holstein-Rathlou NH. Cooperative phase dynamics in coupled nephrons. Int. J. Modern Physics B. 2001;15(23):3079–3098. DOI: 10.1142/S0217979201007233.
  45. Pavlova ON, Pavlov AN, Anisimov AA, Nazimov AI, Sosnovceva OV. Synchronization of oscillations in the dynamics of ensembles of surface nephrons. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(1):14–24 (in Russian). DOI: 10.18500/0869-6632-2011-19-1-14-24.
Short text (in English):
(downloads: 100)