ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Egorov E. N., Hramov A. E. Nonlinear dynamics of helical electron flow in the regime of the virtual cathode forming. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 40-52. DOI: 10.18500/0869-6632-2011-19-4-40-52

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 165)
Article type: 

Nonlinear dynamics of helical electron flow in the regime of the virtual cathode forming

Egorov Evgenij Nikolaevich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University

We produce the results of computer analysis of complex dynamics of non-relativistic electron beam being placed in crossed electric and magnetic fields, in the regime of a virtual cathod forming in additional braking field. The modeling has been made in the framework of 2D numerical model in the geometry of magnetron-injector gun.

  1. Koronovskii AA, Trubetskov DI, Hramov AE. Methods of Nonlinear Dynamics and Chaos in Problems of Microwave Electronics. Vol. 2. Non-Stationary and Chaotic Processes. Moscow: Fizmatlit; 2009. 329 p. (in Russian).
  2. Kalinin YA, Kuznetsov NN, Ukrainskaya TN. Study of wide-band noise-like oscillations in intense beams of charged particles in the mode of formation of a virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(5):32 (in Russian).
  3. Kalinin YA, Koronovskii AA, Khramov AE, Egorov EN, Filatov RA. Experimental and theoretical investigations of stochastic oscillatory phenomena in a nonrelativistic electron beam with a virtual cathode. Plasma Physics Reports. 2005;31(11):938–952. DOI: 10.1134/1.2131130.
  4. Egorov EN, Kalinin YA, Koronovsky AA et al. The processes of formation and nonstationary dynamics of a virtual cathode in a nonrelativistic electron beam in the decelerating field (two-dimensional approximation). Radiophys. Quantum Electron. 2006;49(10):760–768. DOI: 10.1007/s11141-006-0110-5.
  5. Egorov EN, Kalinin YA, Levin YI, Trubetskov DI, Khramov AE. Vacuum generators of broadband chaotic oscillations based on nonrelativistic electron beams with virtual cathode. Bulletin of the Russian Academy of Sciences: Physics. 2005;69(12):1921–1924.
  6. Dmitriev A.S., Panas A.I. Dynamic Chaos: Novel Type of Information for Communication Systems. Moscow: Fizmatlit; 2002. 240 p. (in Russian).
  7. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic synchronization for secure communication. Phys. Usp. 2009;52(12):1213–1238. DOI: 10.3367/UFNe.0179.200912c.1281.
  8. Zalogin NN, Kislov VV. Broadband Chaotic Signals in Radio Engineering and Information Systems. Moscow: Radiotekhnika; 2006. 208 p. (in Russian).
  9. Hasler M, Mazzini G, Ogorzalek M, Rovatti R, Setti G. Special issue on applications of nonlinear dynamics to electronic, information engineering. Proc. IEEE. 2002;90(5):631–640. DOI: 10.1109/JPROC.2002.1014999.
  10. Kurkin SA, Koronovskii AA, Hramov AE. External magnetic field influence on the forming and dynamics of virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(4):182–200 (in Russian). DOI: 10.18500/0869-6632-2008-16-4-182-200.
  11. Kalinin YA, Hramov AE. Experimental study of the effect of external signal on microwave oscillations in a nonrelativistic electron beam with virtual cathode. Tech. Phys. Lett. 2006;32(7):597–599. DOI: 10.1134/S1063785006070145.
  12. Egorov EN, Kalinin YA, Koronovskii AA et al. Analysis of the dependence of the microwave generation power of a low-voltage vircator on controlling parameters. Tech. Phys. 2007;52(10):1387–1390. DOI: 10.1134/S1063784207100258.
  13. Kurkin SA, Koronovskiy AA, Hramov AE. Formation and nonlinear dynamics of a virtual cathode in a weakly relativistic electron flow in an external magnetic field. In: Abstracts of the XIV Scientific School "Nonlinear Waves - 2008". Nizhny Novgorod; 2008. P. 99 (in Russian).
  14. Kurkin SA, Hramov AE. Virtual cathode formation in annular electron beam in an external magnetic field. Tech. Phys. Lett. 2009;35(1):23–25. DOI: 10.1134/S1063785009010076.
  15. Tsimring SE. Electron Beams and Microwave Vacuum Electronics. John Wiley and Sons, Inc., Hoboken, New Jersey; 2007. 576 p. DOI: 10.1002/0470053763.
  16. Tsimring SE. Gyrotron electron beams: velocity spread and energy spread and beam instabilities. Int. J. Infrared Milli. Waves. 2001;22(10):1433–1468. DOI: 10.1023/A:1015034506088.
  17. Kurkin SA. The influence of the noise spread of electron velocities on the dynamics of an electron flow with a virtual cathode. J. Commun. Technol. Electron. 2010;55(5):572–579. DOI: 10.1134/S106422691005013X.
  18. Schuldt R, Borie E. Diocotron instability of the electron beam in the drift tube of a gyrotron. Int. J. Infrared Milli. Waves. 1995;16(10):1675–1700.
  19. Manuilov VN. Numerical simulation of low-frequency oscillations of the space charge and potential in the electron-optical system of a gyrotron. Radiophys. Quantum Electron. 2006;49(10):786–792. DOI: 10.1007/s11141-006-0113-2.
  20. Hramov AE, Kurkin SA, Egorov EN, Koronovskii AA, Filatov RA. The program package for the investigation and optimization of nonlinear non-stationary processes in the microwave generators with electron feedback. Mathematical Models and Computer Simulations. 2011;23(1):3–18 (in Russian).
  21. Birdsall CK, Langdon AB. Plasma Physics, Via Computer Simulation. NY: McGraw-Hill; 1985. 504 p.
  22. Rabinovich MI, Trubetskov DI. Oscillation and Waves in Linear and Nonlinear Systems. Dordrecht: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
  23. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. In 2 Volumes. Moscow: Fizmatlit; 2003 (in Russian). 
Short text (in English):
(downloads: 94)