ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Grishin S. V., Davojan A. R., Sharaevsky Y. P. Nonlinear model of interaction of various power level signals in resonance transmission line on magnetostatic waves. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 123-134. DOI: 10.18500/0869-6632-2005-13-5-123-134

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 144)
Language: 
Russian
Article type: 
Article
UDC: 
621.372.852; 621.318.134.029.64

Nonlinear model of interaction of various power level signals in resonance transmission line on magnetostatic waves

Autors: 
Grishin Sergej Valerevich, Saratov State University
Davojan Artur Rafikovich, Saratov State University
Sharaevsky Yury Pavlovich, Saratov State University
Abstract: 

Investigation results of nonlinear dual-frequency model of resonance transmission line on backward volume magnetostatic waves are demonstrated. The system of two coupled oscillatory circuits is used as a model. The parameters of system depend on the input signal power level and on the detuning value between large and small signals. The results of the model are compared with the experimental data.

Key words: 
Reference: 
  1. Adam JD, Stitzer SN. A magnetostatic wave signal-to-noise enhancer. J. Appl. Phys. Lett. 1980;36(6):485–487. DOI: 10.1063/1.91516.
  2. Adam JD. A broadband microwave signal to noise enhancer. IEEE Trans. Magn. 1980;16(5):1168–1170. DOI: 10.1109/TMAG.1980.1060801.
  3. Zubkov VI, Kildishev VN. Influence of microwave signal power on the characteristics of a microstrip line loaded with a ferrite film. Sov. J. Commun. Technol. Electron. 1988;33(5):1839–1845 (in Russian).
  4. Solovej DV, Sharaevskij JP. Passage of complex signals through a nonlinear transmission line on magnetostatic waves. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(1):11–19 (in Russian).
  5. Sharaevskii YP, Grishin VS, Gurzo VV et al. Interaction of regular and noise signals in a nonlinear transmission line on magnetostatic waves. J. Commun. Technol. Electron. 1995;40(7):1064–1068 (in Russian).
  6. Vashkovsky AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic waves in microwave electronics. Saratov: Saratov University Publishing; 1993. 310 p. (in Russian).
  7. Emtage PR, Stitzer SN. Interaction of signals in ferromagnetic microwave limiters. IEEE Transactions on Microwave Theory and Techniques. 1977;25(3):210–213. DOI: 10.1109/TMTT.1977.1129072.
  8. Melkov GA, Sholom SV. Parametric excitation of spin waves by a surface magnetostatic wave. Sov. Phys. JETP. 1989;96(2):712–719 (in Russian).
  9. Grishin SV, Grishin VS, Gurso VV, Sharaevskii YP. Mutual coupling between a microstrip resonator and a ferromagnetic film in the case of excitation of magnetostatic waves. J. Commun. Technol. Electron. 2003;48(6):724–730 (in Russian).
  10. Grishin SV, Sharaevskii YP. Nonlinear suppression of microwave signals in a resonant magnetostatic wave transmission line. Tech. Phys. Lett. 2005;31(1):81–83. DOI: 10.1134/1.1859509.
  11. Grishin SV, Grishin VS, Sharaevskii YP. Determination of nonlinear equivalent parameters of a ferromagnetic-film resonance system in the case of excitation of magnetostatic waves. J. Commun. Technol. Electron. 2005;50(8):902–908.
  12. Sharaevskii YP, Grishin SV, Gurzo VV. Noise suppressor: Patent for utility model No. 41550. Inventions. Utility Models: Official Bulletin of the Federal Service for Intellectual Property, Patents and Trademarks. No. 30. Moscow: FIIP; 2004. P. 542 (in Russian).
  13. Nomoto T, Matsushita Y. A signal-to-noise enhancer using two MSSW filters and its application to noise reduction in DBS reception. IEEE Transactions on Microwave Theory and Techniques. 1993;41(8):1316–1322. DOI: 10.1109/22.241669.
  14. Kuki T, Nomoto T. A reflection type of MSW signal-to-noise enhancer in the 400–MHz band. IEICE Trans. Electron. 1999;E82-C(4):654–658.
  15. Bunday B. Basic Optimization Methods. Edward Arnold; 1984. 136 p.
  16. Stitzer SN. Frequency selective microwave power limiting in thin YIG films. IEEE Trans. Magn. 1983;19(5):1874–1876. DOI: 10.1109/TMAG.1983.1062773.
  17. Adam JD, Stitzer SN. Frequency selective limiters for high dynamic range microwave receivers. IEEE Transactions on Microwave Theory and Techniques. 1993;41(12):2227–2231. DOI: 10.1109/22.260710.
  18. Vainshtein LA, Wackman DE. Frequency Separation in Vibration and Wave Theory. Moscow: Nauka; 1983. 288 p. (in Russian).
Received: 
06.08.2005
Accepted: 
06.08.2005
Published: 
28.02.2006
Short text (in English):
(downloads: 105)