ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Benedik A. I. Numerical calculation of the electrodynamic characteristics of the diode oscillator with photonic crystal resonator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 49-58. DOI: 10.18500/0869-6632-2014-22-6-49-58

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 224)
Article type: 

Numerical calculation of the electrodynamic characteristics of the diode oscillator with photonic crystal resonator

Benedik Andrej Ivanovich, Saratov State University

Design of a diode oscillator with a field­emission cathode placed in a photonic crystal (PC) resonator is described. Results of numerical calculation of basic electrodynamic parameters of the PC resonator are presented. The 3D electrodynamic simulation by using the modern software package HFSS shows that varying the design of the energy output allows control of the loaded Q­factor in a wide range. Selection of the optimal value of the loaded Q­factor provides rather high output power and efficiency for reasonable values of the field­emission cathode current density.                  

  1. Srivastava V. THz vacuum microelectronic devices. J. Phys. Conf. Series. 2008;114(1):012015. DOI: 10.1088/1742-6596/114/1/012015.
  2. Ives RL. Microfabrication of high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 2004;32(3):1277-1291. DOI: 10.1109/TPS.2004.827595.
  3. Booske JH, Dobbs RJ, Joye CD, Kory CL, Neil GR, Park GS, Park JH, Temkin RJ. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011;1(1):54-75. DOI: 10.1109/TTHZ.2011.2151610.
  4. Sirigiri JR, Kreischer KE, Machuzak J, Mastovsky I, Shapiro MA, Temkin RJ. Photonic-band-gap resonator gyrotron. Phys. Rev. Lett. 2001;86(24):5628-5631. DOI: 10.1103/PhysRevLett.86.5628.
  5. Ashutosh, Jain PK. Design and analysis of metallic photonic band gap cavity for a gyrotron. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2012;11(2):242-251. DOI: 10.1590/S2179-10742012000200002.
  6. Singh A, Jain PK. Multimode analysis and PIC simulation of a metal PBG cavity gyrotron oscillator. Progress in Electromagnetics Research M. 2014;39:11-18. DOI: 10.2528/PIERM14082103.
  7. Joo YD, Park GS, Kim DH, Kim JI, Jeon SG, Han ST, Jung SS, Kim JU. Design of a third-harmonic gyrotron oscillator using a photonic crystal cavity. Japanese Journal of Applied Physics. 2009;48:074502. DOI: 10.1143/JJAP.48.074502.
  8. Nanni E, Lewis S, Shapiro M, Temkin R. A high gain photonic band gap gyrotron amplifier. In: Proc. 14th IEEE International Vacuum Electronics Conference. 21–23 May 2013, Paris, France. IEEE; 2013. DOI: 10.1109/IVEC.2013.6571109.
  9. Han ST, Jeon SG, Shin YM, Jang KH, So JK, Kim JH, Chang SS, Park GS. Experimental investigations on miniaturized high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 2005;33(2):679-684. DOI: 10.1109/TPS.2005.844529.
  10. Jeon SG, Shin YM, Jang KH, Han ST, So JK, Joo YD, Park GS. High order mode formation of externally coupled hybrid photonic-band-gap cavity. Appl. Phys. Lett. 2007;90(2):021112. DOI: 10.1063/1.2431451.
  11. Jang KH, Jeon SG, Kim JI, Won JH, So JK, Bak SH, Srivastava A, Jung SS, Park GS. High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron. Appl. Phys. Lett. 2008;93(21):211104. DOI: 10.1063/1.3037026.
  12. Liu X, Lei H, Yu T, Feng J, Liao F. Characteristics of terahertz slow-wave system with two-dimensional photonic band-gap structure. Optics Communications. 2008;281(1):102-107. DOI: 10.1016/j.optcom.2007.09.013.
  13. Gong Y, Yin H, Wei Y, Yue L, Deng M, Lu Z, Xu X, Wang W, Liu P, Liao F. Study of traveling wave tube with folded-waveguide circuit shielded by photonic crystals. IEEE Trans. Electron Devices. 2010;57(5):1137-1145. DOI: 10.1109/TED.2010.2043176.
  14. Shapiro MA, Brown WJ, Mastovsky I, Sirigiri JR, Temkin RJ. 17 GHz photonic band gap cavity with improved input coupling. Phys. Rev. ST Accel. Beams. 2001;4(4):042001. DOI: 10.1103/PhysRevSTAB.4.042001.
  15. Smirnova EI, Kesar AS, Mastovsky I, Shapiro MA, Temkin RJ. Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure. Phys. Rev. Lett. 2005;95(7):074801. DOI: 10.1103/PhysRevLett.95.074801.
  16. Han ST. A high-frequency monotron employing two-dimensional, dielectric photonic-crystal, diode resonator. In: 35th Int. Conf. Infrared Millim. Terahertz Waves (IRMMW-THz). Rome, Italy, 28 Oct. 2010. IEEE; 2010. DOI: 10.1109/ICIMW.2010.5612858.
  17. Han ST. Numerical study on radio-frequency field emission from carbon nanotube film in a photonic crystal diode resonator. J. Korean Phys. Soc. 2011;59(1):141-144. DOI: 10.3938/jkps.59.141.
  18. Benedik AI. Numerical simulation of the field emission diode oscillator with photonic crystal resonator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(2):63-71 (in Russian). DOI: 10.18500/0869-6632-2012-20-2-63-71.
  19. Benedik AI, Ryskin NM, Han ST. Theory and simulation of field emission diode oscillators. Phys. Plasmas. 2013;20(8):083117. DOI: 10.1063/1.4818583.
  20. Johnson SG, Joannopoulos JD. Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis. Optics Express. 2001;8(3):173-190. DOI: 10.1364/OE.8.000173.
  21. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications. 2010;181(3):687–702. DOI: 10.1016/j.cpc.2009.11.008.
  22. High Frequency Structure Simulator (HFSS) of ANSYS [Electronic resource]. Available from:
Short text (in English):
(downloads: 93)