ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Beloglazkina M. V., Koronovskii A. A., Hramov A. E. Numerical investigation of nonlinear nonstationary process in a chain of coupled gyro-backward-wave oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 5, pp. 115-126. DOI: 10.18500/0869-6632-2008-16-5-115-126

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 126)
Language: 
Russian
Article type: 
Article
UDC: 
537.5

Numerical investigation of nonlinear nonstationary process in a chain of coupled gyro-backward-wave oscillators

Autors: 
Beloglazkina Marina Vladimirovna, Saratov State University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

In this work the nonlinear dynamics in a chain of unidirectionally coupled gyrobackward-wave oscillators is studied. In coupled system, when the control parameters of each distributed system are changed, it is possible to show both a developed chaos dynamics and the regimes of stationary oscillations with one frequency.

Key words: 
Reference: 
  1. Dmitriev AS, Panas AI. Dynamic Chaos: New Carriers of Information for Communication Systems. Moscow: Fizmatlit; 2002. 252 p. (in Russian).
  2. Dronov V, Hendrey MR, Antonsen TM, Ott E. Communication with a chaotic traveling wave tube microwave generator. Chaos. 2004;14(1):30–37. DOI: 10.1063/1.1622352.
  3. Dmitriev AS, Panas AI, Starkov SO. Dynamic chaos as a paradigm of modern communication systems. Telecommunications and Radio Engineering. 1997;(10):4–26 (in Russian).
  4. Dmitriev AS, Kuzmin LV, Panas AI, Starkov SO. Experiments on the transmission of information using chaos through a radio channel. J. Commun. Technol. Electron. 1998;43(9):1115–1128 (in Russian).
  5. Hasler M, Mazzini G, Ogorzalek M, Rovatti R, Setti G. Scanning the special issue - special issue on applications of nonlinear dynamics to electronic and information engineering. Proc. IEEE. 2002;90(5):631–640. DOI: 10.1109/JPROC.2002.1014999.
  6. Felch KL, Danly BG, Jory HR, Kreischer KE, Lawsom W, Levush B, Temkin RJ. Characteristics and applications of fast-wave gyrodevices. Proc. IEEE. 1999;87(5):752–781. DOI: 10.1109/5.757254.
  7. Nusinovich GS, Vlasov AN, Antonsen TM. Nonstationary phenomena in tapered gyro-backward-wave oscillators. Phys. Rev. Lett. 2001;87(21):218301. DOI: 10.1103/PhysRevLett.87.218301.
  8. Grudiev A, Schunemann K. Numerical analysis of an injection-locked gyrotron backward-wave oscillator with tapered sections. Phys. Rev. E. 2003;68(1):016501. DOI: 10.1103/PhysRevE.68.016501.
  9. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 2. Moscow: Fizmatlit; 2004. 648 p. (in Russian).
  10. Trubetskov DI, Chetverikov AP. Self-oscillations in distributed systems "electron flow - counterpropagating (backward) electromagnetic wave". Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):9–34 (in Russian).
  11. Dmitriev AY, Trubetskov DI, Chetverikov AP. Nonstationary processes in the interaction of a helical electron beam with a counterpropagating wave in a waveguide. Radiophys. Quantum Electron. 1991;34(9):595 (in Russian).
  12. Ryskin NM, Titov VN. Transition to fully developed chaos in a system of two unidirectionally coupled backward-wave oscillators. Tech. Phys. 2003;48(9):1170–1174. DOI: 10.1134/1.1611903.
  13. Ginzburg NS, Kuznetsov SP, Fedoseeva TN. Theory of transients in relativistic backward-wave tubes. Radiophys. Quantum Electron. 1978;21(7):728–739. DOI: 10.1007/BF01033055.
  14. Bezruchko BP, Kuznetsov SP, Trubetskov DI. Experimental observation of stochastic self-oscillations in a dynamic system electron beam - backward electromagnetic wave. JETP Lett. 1979;29(3):180–184 (in Russian).
  15. Ryskin NM, Titov VN, Trubetskov DI. Details of the transition to chaos in the electron beam - backward electromagnetic wave system. Proc. Acad. Sci. 1998;358(5):620–623 (in Russian).
  16. Ryskin NM, Titov VN. On the scenario of the transition to chaos in the one-parameter model of the backward-wave tube. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):75 (in Russian).
  17. Trubetskov DI, Anfinogentov VG, Ryskin NM, Titov VN, Khramov AE. Complex dynamics of microwave electronic devices (nonlinear nonstationary theory from the standpoint of nonlinear dynamics). Radio Engineering. 1999;63(4):61–68 (in Russian).
  18. Hramov AE, Koronovskii AA, Popov PV, Rempen IS. Chaotic synchronization of coupled electron-wave systems with backward waves. Chaos. 2005;15(1):013705. DOI: 10.1063/1.1857615.
  19. Yulpatov VK. Nonlinear theory of interaction of a non-rectilinear periodic electron beam with an electromagnetic field. Radio Electronics Issues. Ser. I. Electronics. 1965;(12):15 (in Russian).
  20. Dmitriev AY, Konevets AE, Pishchik LA, Trubetskov DI, Chetverikov AP. Review lectures on the theory of interaction of weakly relativistic helical electron beams with electromagnetic waves in a waveguide. In: Lectures on Microwave Electronics and Radio Physics. 7th Winter School-Seminar. Book 1. Saratov; 1981. P. 61 (in Russian).
  21. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence. Springer, Berlin, Heidelberg; 1981.  P. 366–381. DOI: 10.1007/BFb0091924.
  22. Koronovsky AA, Trubetskov DI, Khramov AE. influence of an external signal on self-oscillations in the distributed system “helical electron beam—backward electromagnetic wave”. Radiophys. Quantum Electron. 2002;45(9):706–724. DOI: 10.1023/A:1021797418844.
  23. Trubetskov DI, Koronovsky AA, Khramov AE. Synchronization of distributed electron–wave self-oscillatory systems with a backward wave. Radiophys. Quantum Electron. 2004;47(5–6):305–331. DOI: 10.1023/B:RAQE.0000046307.62799.f2.
Received: 
13.02.2008
Accepted: 
10.07.2008
Published: 
31.12.2008
Short text (in English):
(downloads: 41)