ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Galishnikov A. A., Dudko G. M., Filimonov Y. A. Numerical modelling of magnetostatic wave soliton formation process. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 113-122. DOI: 10.18500/0869-6632-2005-13-5-113-122

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 103)
Language: 
Russian
Article type: 
Article
UDC: 
548; 537.611.46

Numerical modelling of magnetostatic wave soliton formation process

Autors: 
Galishnikov Aleksandr Aleksandrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Through numerical simulation by nonlinear Schrodinger equation magnetostatic wave soliton formation process is considered when amplitude and shape of initial pulse differ from soliton solution and non-soliton part can influence on soliton evolution. It is shown, that in lossless approximation soliton peak amplitude can oscillate with spatial period Λ: LD ≤ Λ ≤ 66 · LD (or friequency Ω: 0.015 · TD−1 ≤ Ω ≤ TD−1), LD и TD – length and time of dispersion. With dissipation corresponding to ferrite films, influence of non-solitin part leads to non-monotone behaviour of dependence peak output power versus power of input pulse.

Key words: 
Reference: 
  1. Zvezdin AK, Mednikov AM, Popkov AF. Functional devices based on magnetostatic and magnetoacoustic waves. Electronics Industry. 1983;(8):14–19 (in Russian).
  2. Marcelli R, Nikitov SA. Nonlinear Microwave Signal Processing: Towards a New Range of Devices. Kluwer Acad. Publ; 1996. 509 p.
  3. Lukomsky VP. Nonlinear magnetostatic waves in ferromagnetic plates. Ukrainian Journal of Physics. 1978;23(1):134–139 (in Russian).
  4. Zvezdin AK, Popkov AF. Towards a nonlinear theory of magnetostatic spin waves. Sov. Phys. JETP. 1983;84(2):606–615 (in Russian).
  5. Bordman AD, Nikitov SA. On the theory of surface magnetostatic waves. Soviet Physics, Solid State. 1989;31(6):281–282 (in Russian).
  6. Kalinikos BA, Kovshikov NG, Slavin AN. Observation of spin-wave solitons in ferromagnetic films. JETP Lett. 1983;38(7):343–347 (in Russian).
  7. Kalinikos BA, Kovshikov NG, Slavin AN. Envelope solitons and modulation instability of dipole-converted magnetization waves in yttrium iron garnet films. Sov. Phys. JETP. 1988;94(2):159–175 (in Russian).
  8. De Gasperis P, Marcelli R, Miccoli G. Magnetostatic soliton propagation at microwave frequency in magnetic garnet films. Phys. Rev. Lett. 1987;59(4):481–484. DOI: 10.1103/physrevlett.59.481.
  9. Chen M, Tsankov MA, Nash JM, Patton CE. Backward volume wave microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1994;49(18):12773–12790. DOI: 10.1103/physrevb.49.12773.
  10. Tsankov MA, Chen M, Patton CE. Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay, and collision. J. Appl. Phys. 1994;76(7):4274–4289. DOI: 10.1063/1.357312.
  11. Filimonov YA, Marcelli R, Nikitov SA. Non-linear magnetostatic surface waves pulse propagation in ferrite-dielectric-metal structure. IEEE Trans. Magn. 2002;38(5):3105–3107. DOI: 10.1109/TMAG.2002.802482.
  12. Dudko GM. Effects of self-action of magnetostatic waves in ferromagnetic films. Extended abstract of PhD thesis. Saratov: SSU; 2002. 24 p. (in Russian)
  13. Slavin AN, Dudko GM. Numerical modelling ofspin wave soliton propagation in ferromagnetic films. J. Magn. Magn. Mat. 1990;86(1):115–123. DOI: 10.1016/0304-8853(90)90092-5.
  14. Zaspel CE, Kabos P, Xia H, Zhang HY, Patton CE. Modelling of the power-dependent velocity of microwave magnetic envelope solitons in thin films. J. Appl. Phys. 1999;85(12):8307–8311. DOI: 10.1063/1.370674.
  15. Kostylev MP, Kovshikov NG. Excitation, generation, and propagation of soliton-like spin-wave pulses in ferromagnetic films: Numerical calculation and experiment. Tech. Phys. 2002;47(11):1350–1358. DOI: 10.1134/1.1522101.
  16. Nash JM, Kabos P, Staudinger RA, Patton CE. Phase profiles of microwave magnetic envelope solitons. J. Appl. Phys. 1998;83(5):2689–2699. DOI: 10.1063/1.367033.
  17. Xia H, Kabos P, Staudinger RA, Patton CE, Slavin AN. Velocity characteristics of microwave-magnetic-envelope solitons. Phys. Rev. B. 1998;58(5):2708–2715. DOI: 10.1103/PhysRevB.58.2708.
  18. Xia H, Kabos P, Patton CE, Ensle HE. Decay properties of microwave-magnetic-envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1997;55(22):15018–15025. DOI: 10.1103/PhysRevB.55.15018.
  19. Kovshikov NG, Kalinikos BA, Patton CE, Wright ES, Nash JM. Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1996;54(21):15210–15223. DOI: 10.1103/PhysRevB.54.15210.
  20. Akhmanov SA, Vysloukh VA, Chirkin AS. Optics of Femtosecond Laser Pulses. American Institute of Physics; 1992. 381 p.
  21. Satsuma J, Yajima N. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys. Suppl. 1974;55:284–306. DOI: 10.1143/PTPS.55.284.
  22. Galishnikov AA, Dudko GM, Filimonov YA. Solitons of magnetostatic surface waves in a ferrite-dielectric-metal structure. J. Commun. Technol. Electron. 2004;49(2):208–214.
  23. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Berlin: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
Received: 
08.09.2005
Accepted: 
08.09.2005
Published: 
28.02.2006
Short text (in English):
(downloads: 92)