ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Galishnikov A. A., Dudko G. M., Filimonov Y. A. Numerical modelling of magnetostatic wave soliton formation process. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 113-122. DOI: 10.18500/0869-6632-2005-13-5-113-122

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 103)
Article type: 
548; 537.611.46

Numerical modelling of magnetostatic wave soliton formation process

Galishnikov Aleksandr Aleksandrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

Through numerical simulation by nonlinear Schrodinger equation magnetostatic wave soliton formation process is considered when amplitude and shape of initial pulse differ from soliton solution and non-soliton part can influence on soliton evolution. It is shown, that in lossless approximation soliton peak amplitude can oscillate with spatial period Λ: LD ≤ Λ ≤ 66 · LD (or friequency Ω: 0.015 · TD−1 ≤ Ω ≤ TD−1), LD и TD – length and time of dispersion. With dissipation corresponding to ferrite films, influence of non-solitin part leads to non-monotone behaviour of dependence peak output power versus power of input pulse.

Key words: 
  1. Zvezdin AK, Mednikov AM, Popkov AF. Functional devices based on magnetostatic and magnetoacoustic waves. Electronics Industry. 1983;(8):14–19 (in Russian).
  2. Marcelli R, Nikitov SA. Nonlinear Microwave Signal Processing: Towards a New Range of Devices. Kluwer Acad. Publ; 1996. 509 p.
  3. Lukomsky VP. Nonlinear magnetostatic waves in ferromagnetic plates. Ukrainian Journal of Physics. 1978;23(1):134–139 (in Russian).
  4. Zvezdin AK, Popkov AF. Towards a nonlinear theory of magnetostatic spin waves. Sov. Phys. JETP. 1983;84(2):606–615 (in Russian).
  5. Bordman AD, Nikitov SA. On the theory of surface magnetostatic waves. Soviet Physics, Solid State. 1989;31(6):281–282 (in Russian).
  6. Kalinikos BA, Kovshikov NG, Slavin AN. Observation of spin-wave solitons in ferromagnetic films. JETP Lett. 1983;38(7):343–347 (in Russian).
  7. Kalinikos BA, Kovshikov NG, Slavin AN. Envelope solitons and modulation instability of dipole-converted magnetization waves in yttrium iron garnet films. Sov. Phys. JETP. 1988;94(2):159–175 (in Russian).
  8. De Gasperis P, Marcelli R, Miccoli G. Magnetostatic soliton propagation at microwave frequency in magnetic garnet films. Phys. Rev. Lett. 1987;59(4):481–484. DOI: 10.1103/physrevlett.59.481.
  9. Chen M, Tsankov MA, Nash JM, Patton CE. Backward volume wave microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1994;49(18):12773–12790. DOI: 10.1103/physrevb.49.12773.
  10. Tsankov MA, Chen M, Patton CE. Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay, and collision. J. Appl. Phys. 1994;76(7):4274–4289. DOI: 10.1063/1.357312.
  11. Filimonov YA, Marcelli R, Nikitov SA. Non-linear magnetostatic surface waves pulse propagation in ferrite-dielectric-metal structure. IEEE Trans. Magn. 2002;38(5):3105–3107. DOI: 10.1109/TMAG.2002.802482.
  12. Dudko GM. Effects of self-action of magnetostatic waves in ferromagnetic films. Extended abstract of PhD thesis. Saratov: SSU; 2002. 24 p. (in Russian)
  13. Slavin AN, Dudko GM. Numerical modelling ofspin wave soliton propagation in ferromagnetic films. J. Magn. Magn. Mat. 1990;86(1):115–123. DOI: 10.1016/0304-8853(90)90092-5.
  14. Zaspel CE, Kabos P, Xia H, Zhang HY, Patton CE. Modelling of the power-dependent velocity of microwave magnetic envelope solitons in thin films. J. Appl. Phys. 1999;85(12):8307–8311. DOI: 10.1063/1.370674.
  15. Kostylev MP, Kovshikov NG. Excitation, generation, and propagation of soliton-like spin-wave pulses in ferromagnetic films: Numerical calculation and experiment. Tech. Phys. 2002;47(11):1350–1358. DOI: 10.1134/1.1522101.
  16. Nash JM, Kabos P, Staudinger RA, Patton CE. Phase profiles of microwave magnetic envelope solitons. J. Appl. Phys. 1998;83(5):2689–2699. DOI: 10.1063/1.367033.
  17. Xia H, Kabos P, Staudinger RA, Patton CE, Slavin AN. Velocity characteristics of microwave-magnetic-envelope solitons. Phys. Rev. B. 1998;58(5):2708–2715. DOI: 10.1103/PhysRevB.58.2708.
  18. Xia H, Kabos P, Patton CE, Ensle HE. Decay properties of microwave-magnetic-envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1997;55(22):15018–15025. DOI: 10.1103/PhysRevB.55.15018.
  19. Kovshikov NG, Kalinikos BA, Patton CE, Wright ES, Nash JM. Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B. 1996;54(21):15210–15223. DOI: 10.1103/PhysRevB.54.15210.
  20. Akhmanov SA, Vysloukh VA, Chirkin AS. Optics of Femtosecond Laser Pulses. American Institute of Physics; 1992. 381 p.
  21. Satsuma J, Yajima N. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys. Suppl. 1974;55:284–306. DOI: 10.1143/PTPS.55.284.
  22. Galishnikov AA, Dudko GM, Filimonov YA. Solitons of magnetostatic surface waves in a ferrite-dielectric-metal structure. J. Commun. Technol. Electron. 2004;49(2):208–214.
  23. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Berlin: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
Short text (in English):
(downloads: 92)