ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bogomolov G. D., Kleev A. I. Ohmic loss calculation in the open resonators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 4, pp. 112-121. DOI: 10.18500/0869-6632-2012-20-4-112-121

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Language: 
Russian
Article type: 
Article
UDC: 
537.84.6: 621.371.334

Ohmic loss calculation in the open resonators

Autors: 
Bogomolov Genrih Dmitrievich, P.L. Kapitza Institute for Physical Problems of Russian Academy of Sciences
Kleev Andrej Igorevich, P.L. Kapitza Institute for Physical Problems of Russian Academy of Sciences
Abstract: 

We present a numerical method for calculation the eigenmodes of the open resonator. We assume, that the resonator mirror has the finite conductivity. The new approach, based on the modified method of the field continuation, was suggested. The results obtained were compared with the asymptotic solution.

Reference: 
  1. Afsar MN, Birch JB, Clarke RN. The measurements of the properties of materials. Proceedings of the IEEE. 1986;74(1):183–199. DOI: 10.1109/PROC.1986.13432.
  2. Kyurkchan AG, Anyutin AP. Continued boundary condition method and wavelets. Dokl. Phys. 2002;385(3):309–313 (in Russian).
  3. Kyurkchan AG, Manenkov SA. Electromagnetic wave diffraction from a large asperity on an impedance plane. J. Commun. Technol. Electron. 2004;49(12):1319–1326.
  4. Kyurkchan AG, Smirnova NI. Solution of diffraction problems using the methods of extended boundary conditions and discrete sources. J. Commun. Technol. Electron. 2005;50(10):1139–1146.
  5. Bogomolov GD, Kleev AI. Calculation of open resonators with the help of a modified method of extended boundary conditions. J. Commun. Technol. Electron. 2011;56(10):1179–1185. DOI: 10.1134/S1064226911100068.
  6. Bogomolov GD, Kleev AI, Tarasov MA. Quasi-optic excitation of an open resonator. J. Commun. Technol. Electron. 2010;55(6):603–615. DOI: 10.1134/S106422691006001X.
  7. Bogomolov GD, Kleev AI, Tarasov MA. Excitation of an open resonator coupled with a waveguide via a slot in a mirror. J. Commun. Technol. Electron. 2010;55(11):1231–1238. DOI: 10.1134/S1064226910110045.
  8. Mitzner MK. Effective boundary conditions for reflection and transmission by an absorbing shell of arbitrary shape. IEEE Transactions on Antennas and Propagation. 1968;16(6):706–712. DOI: 10.1109/TAP.1968.1139283.
  9. Bleszynski E, Bleszynski M, Jaroszewich T. Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets. IEEE Antennas and Propagation Magazine. 1993;35(6):14–25. DOI: 10.1109/74.248480.
  10. Bogomolov GD, Kleev AI. Calculation of ohmic loss in the case of diffraction by a strip grating. J. Commun. Technol. Electron. 2009;54(6):611–624. DOI: 10.1134/S1064226909060011.
  11. Katselenbaum BZ. Theory of Irregular Waveguides with Slowly Varying Parameters. Moscow: USSR Academy of Sciences Publishing; 1961. 214 p. (in Russian).
  12. Morse FM, Feshbach G. Methods of Theoretical Physics. Vol. 1. NY: McGraw-Hill; 1953. 997 p.
  13. Abramovitz M, Steegan I, editors. Special Functions Handbook with Formulas, Graphs and Mathematical Tables. Moscow: Nauka; 1979. 832 p. (in Russian).
  14. Kyurkchan AG, Sukov AI, Kleev AI. Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equations. In: Wriedt T, editor. Generalized Multipole Techniques for Electromagnetic and Light Scattering. Amsterdam: Elsevier; 1999. P. 81–109. DOI: 10.1016/B978-044450282-7/50017-8.
  15. Kyurkchan AG, Sukov AI, Kleev AI. The method for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered field. Applied Computational Electromagnetics Society Journal. 1994;9(3):101–112.
  16. Kyurkchan AG, Kleev AI. The use of a priori information on analytic properties of a solution in electromagnetic and acoustic problems. J. Commun. Technol. Electron. 1996;41(2):146–153.
  17. Bogomolov GD, Kleev AI. Calculation of a quasi-optical resonator with the corrugated mirror. J. Commun. Technol. Electron. 1999;44(9):964–972.
  18. Vainshtein LA. Open Resonators and Open Waveguides. Boulder, Colo., Golem Press; 1969. 439 p.
  19. Bogomolov GD, Kleev AI. Application of asymptotic methods in the theory of open resonators. J. Commun. Technol. Electron. 2011;56(9):1079–1085. DOI: 10.1134/S1064226911090038.
  20. Kyurkchan AG, Anyutin AP. The well-posedness of the formulation of diffraction problems reduced to fredholm integral equations of the first kind with a smooth kernel. J. Commun. Technol. Electron. 2006;51(1):48–51. DOI: 10.1134/S1064226906010062.
  21. Shestopalov VP. Spectral Theory and Excitation of Open Structures. Kiev: Naukova Dumka; 1987. 288 p. (in Russian).
  22. Yakovlev AB, Hanson GW. Fundamental modal phenomena on isotropic and anisotropic planar slab dielectric waveguide. IEEE Transactions on Antennas and Propagation. 2003;51(4):888–897. DOI: 10.1109/TAP.2003.811098.
  23. Bogomolov GD, Kleev AI. Stability region of the fundamental vibration of a waveguide quasi-optical resonator. J. Commun. Technol. Electron. 1999;44(3):276 (in Russian).
  24. Ananiev YA. Unstable resonators and their applications (review). Soviet Journal of Quantum Electronics. 1971;1(6):3–34 (in Russian).
  25. Sanderson RL, Streifer W. Unstable laser resonator modes. Applied Optics. 1969;8(10):2129–2136. DOI: 10.1364/AO.8.002129. 
Received: 
29.08.2012
Accepted: 
29.08.2012
Published: 
31.10.2012
Short text (in English):
(downloads: 48)