ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kanakov O. I. On the 130th Anniversary of the Korteweg-de Vries Solitary Wave and the 60th Anniversary of the Word "Soliton". Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 2, pp. 145-152. DOI: 10.18500/0869-6632-003169, EDN: RLVYAD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Heading: 
Article type: 
Editorial
EDN: 

On the 130th Anniversary of the Korteweg-de Vries Solitary Wave and the 60th Anniversary of the Word "Soliton"

Autors: 
Kanakov Oleg Igorevich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

In 2025, it will be 130 years since the publication of the article by D. Korteweg and G. de Vries, which explored the famous nonlinear partial differential equation describing waves on water under the assumption that the water depth is much less than the wavelength but much greater than the amplitude, now known by the names of these authors (although it was recorded in another form earlier by J. Boussinesq).

Reference: 
  1. Korteweg DJ, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895;39(240):422–443. DOI: 10.1080/14786449508620739.
  2. Boussinesq J. Essai sur la theorie des eaux courantes. Paris: Imprimerie Nationale; 1877. 680 p. https://gallica.bnf.fr/ark:/12148/bpt6k56673076.
  3. Scott Russell J. Report of the Committee on Waves: Appointed by the British Association at Bristol in 1836 [and Consisting of Sir John Robison and John Scott Russell]. London: R. and J. E. Taylor; 1838. 80 p. https://books.google.ru/books?id=ahEMAAAAYAAJ.
  4. Zabusky NJ, Kruskal MD. Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Physical Review Letters. 1965;15(6):240–243. DOI: 10.1103/PhysRevLett.15.240.
  5. Marin F. Solitons: Historical and physical introduction. In: RA. Meyers (ed.). Encyclopedia of Complexity and Systems Science. Berlin, Heidelberg: Springer; 2017. P. 1–20. DOI: 10.1007/978-3-642-27737-5_506-2.
  6. Ablowitz MJ, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM; 1981. 424 p. DOI: 10.1137/1.9781611970883.
  7. Dodd RK, Eilbeck CJ, Gibbon JD, Morris HC. Solitons and Nonlinear Wave Equations. New York: Academic Press; 1982. 630 p.
  8. Gardner CS, Greene JM, Kruskal MD, Miura RM. Method for solving the Korteweg-deVries equation. Physical Review Letters. 1967;19(19):1095–1097. DOI: 10.1103/PhysRevLett.19.1095.
  9. Gardner CS, Greene JM, Kruskal MD, Miura RM. Korteweg – de Vries equation and generalizations. VI. Methods for exact solution. Communications on Pure and Applied Mathematics. 1974;27(1): 97–133. DOI: 10.1002/cpa.3160270108.
  10. Lax PD. Integrals of nonlinear equations of evolution and solitary waves. Communications on Pure and Applied Mathematics. 1968;21(5):467–490. DOI: 10.1002/cpa3160210503.
  11. Eckhaus W, van Harten A. Chapter 3. Isospectral Potentials: The Lax Approach. In: The Inverse Scattering Transformation and The Theory of Solitons: An Introduction. North-Holland Mathematics Studies, vol. 50. Elsevier; 1981. P. 53–73. DOI: 10.1016/S0304-0208(08)70593-0.
  12. Zakharov VE, Faddeev LD. Korteweg-de Vries equation: A completely integrable Hamiltonian system. Functional Analysis and Its Applications. 1972;5(4):280–287. MathNet: faa2612.
  13. Krishnaswami GS, Vishnu TR. The Idea of a Lax Pair — Part II: Continuum Wave Equations. Resonance. 2021;26(2):257–274. DOI: 10.1007/s12045-021-1124-1.
  14. Arnold VI. Mathematical Methods of Classical Mechanics. New York: Springer; 1989. 536 p.
  15. Zabrodin A. Lectures on nonlinear integrable equations and their solutions. Preprint arXiv: 1812.11830. DOI: 10.48550/arXiv.1812.11830.
  16. Faddeev LD. A Hamiltonian interpretation of the inverse scattering method. In: RK. Bullough, PJ. Caudrey (eds.). Solitons. Topics in Current Physics, vol. 17. Berlin, Heidelberg: Springer; 1980. P. 339–354. DOI: 10.1007/978-3-642-81448-8_11.
Received: 
17.03.2025
Accepted: 
31.03.2025
Available online: 
31.03.2025
Published: 
31.03.2025