ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Talagaev Y. V., Tarakanov A. F. Optimal chaos suppression and transition processes in сorrected multiparametrical oscillatory systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 5, pp. 99-114. DOI: 10.18500/0869-6632-2008-16-5-99-114

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 147)
Article type: 

Optimal chaos suppression and transition processes in сorrected multiparametrical oscillatory systems

Talagaev Yury Viktorovich, Balashov branch of the Saratov State University. N.G. Chernyshevsky
Tarakanov Andrej Fedorovich, Borisoglebsk State Pedagogical Institute (BSPI)

In the work we present a two-stage scheme of optimal correction of the dynamic system’s parameters space aimed at the transformation of the system’s chaotic regime into the regular one through minimal intensity of the perturbation. The offered technique is based on combination of the optimal control theory methods with numerical tests of chaos suppression quality. It is theoretically proved that optimal corrective functions found in the course of scheme application allow putting into practice the process of modification of chaotic attractor into the unique stable limit set corresponding to the transition of the system to the stable dynamics. Numerical experiment performed on a generalized model of an auto-oscillatory system showed that the offered correction technique is effective in multiparametrical analysis of situations that arise in optimal chaos suppression.

Key words: 
  1. Shinbrot T, Grebogi C, Ott E, and Yorke J.A. Using small perturbations to control chaos. Nature. 1993;363(6428):411–417. DOI: 10.1038/363411a0.
  2. Fradkov AL, Evans RJ, Andrievsky BR. Control of chaos: methods and applications in mechanics. Phil. Trans. R. Soc. A. 2006;364(1846):2279–2307. DOI: 10.1098/rsta.2006.1826.
  3. Chen G, Moiola JL, Wang HO. Bifurcation control: Theories, methods, and applications. Int. J. Bifurcat. Chaos. 2000;10(3):511–548. DOI: 10.1142/S0218127400000360.
  4. Krener A, Kang W, Chang DE. Control bifurcations. IEEE Trans. Automatic Control. 2004;49(8):1231–1246. DOI: 10.1109/TAC.2004.832199.
  5. Kuznetsov AP, Turukina LV, Savin AV, Sataev IR, Sedova JV, Milovanov SV. Multi-parameter picture of transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(3):80 (in Russian).
  6. Seyranian AP, Mailybaev AA. Multiparameter Stability Theory with Mechanical Applications. World Scientific, New Jersey, London; 2003. 420 p. DOI: 10.1142/5305.
  7. Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109(1–2):91–112. DOI: 10.1016/S0167-2789(97)00162-0.
  8. Kuznetsov SP, Kuznetsov AP, Sataev IR. Multiparameter critical situations, universality and scaling in two-dimensional period-doubling maps. J. Stat. Phys. 2005;121(5–6):697–748. DOI: 10.1007/s10955-005-6973-6.
  9. Warncke J, Bauer M, Martienssen W. Multiparameter control of high-dimensional chaotic systems. Europhys. Lett. 1994;25(5):323–328. DOI: 10.1209/0295-5075/25/5/002.
  10. Barreto E, Grebogi C. Multiparameter control of chaos. Phys. Rev. E. 1995;54(4):3553–3557. DOI: 10.1103/PhysRevE.52.3553.
  11. Locher M, Hunt ER. Control of high-dimensional chaos in systems with symmetry. Phys. Rev. Lett. 1997;79(1):63–66. DOI: 10.1103/PhysRevLett.79.63.
  12. Paula AS, Savi MA. A multiparameter chaos control method based on OGY approach. Chaos, Solitons & Fractals. 2008;40(3):1376–1390. DOI: 10.1016/j.chaos.2007.09.056.
  13. Gorelik VA, Talagaev YV, Tarakanov AF. Optimal parametric correction of the dynamics of systems with a chaotic attractor. Modeling, Decomposition and Optimization of Complex Dynamic Processes. 2006;21(1):34–46 (in Russian).
  14. Fradkov AL. Cybernetic Physics: Principles and Examples. St. Petersburg: Nauka; 2003. 208 p. (in Russian).
  15. Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys. Rev. Lett. 1990;64(11):1196–1199. DOI: 10.1103/PhysRevLett.64.1196.
  16. Chacon R. Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos. Eur. Phys. J. B. 2002;30(2):207–210. DOI: 10.1140/epjb/e2002-00375-6.
  17. Lenci1 S, Rega G. Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics. 2003;33(1):71–86. DOI: 10.1023/A:1025509014101.
  18. Loskutov AY. Parametric perturbation and non-feedback controlling chaotic motion. Discrete and Continuous Dynamical Systems - B. 2006;6(5):1157–1175.
  19. Cao H, Chen G. A simplified optimal control method for homoclinic bifurcations. Nonlinear Dynamics. 2005;42(1):43–61. DOI: 10.1007/s11071-005-0045-y.
  20. Dzhanoev AR, Loskutov A, Cao H, Sanjuan MAF. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B. 2007;7(2):275–284. DOI: 10.3934/dcdsb.2007.7.275.
  21. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishechenko EF. The Mathematical Theory of Optimal Processes. New York, London: John Wiley & Sons; 1962. 360 p.
  22. Lee EB, Markus L. Foundations of Optimal Control Theory. Krieger Pub Co; 1986. 576 p.
  23. Athans M, Falb P. Optimal Control: An Introduction to the Theory and Its Applications. New York: McGraw-Hill; 1966. 879 p.
  24. Talagaev YV, Tarakanov A.F. Modification of chaotic systems limit sets by multiparametrical optimal correction. In: Proc. 3rd Int. IEEE Scientific Conference on Physics and Control (PhysCon 2007). September 3rd-7th, 2007. University of Potsdam, Germany; 2007.
  25. Talagaev YV, Tarakanov AF. Multiparametrical optimal correction for chaos suppression in a family of Duffing–van der Pol oscillators. In: Proc. of 6th EUROMECH.  Nonlinear Dynamics Conference (ENOC 2008). June 30–July 4, 2008. Saint Petersburg, Russia; 2009.
  26. Talagaev YV, Tarakanov AF. Optimal parametric stabilization of chaotic oscillatory systems. Automation and Remote Control. 2007:28(2):67–72 (in Russian).
  27. Sanjuan MAF. Symmetry-restoring crises, period-adding and chaotic transitions in the cubic van der Pol oscillator. J. Sound Vibration. 1996;193(4):863–875. DOI: 10.1006/jsvi.1996.0319.
  28. Andrievskii BR, Fradkov AL. Control of chaos: Methods and applications. I. Methods. Automation and Remote Control. 2003;64(5):673–713. DOI: 10.1023/A:1023684619933.
  29. Kuznetsov SP. Dynamic Chaos (Course of Lectures). Moscow: Fizmatlit; 2001. 296 p. (in Russian).
Short text (in English):
(downloads: 78)