ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Severyuhina A. N. Optimization of basis function set for model map reconstruction of short electroencephalogram tracings during epileptic seizure. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 88-95. DOI: 10.18500/0869-6632-2013-21-3-88-95

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 79)
Language: 
Russian
Article type: 
Article
UDC: 
51-76+612.8

Optimization of basis function set for model map reconstruction of short electroencephalogram tracings during epileptic seizure

Autors: 
Severyuhina Aleksandra Nikolaevna, Saratov State University
Abstract: 

The problem of compact mathematical model reconstruction of short electroencephalogram tracings during epileptic seizure is solved. This kind of model map can be useful in many applications, for example, in time series segmentation with following clustering of obtained fragments. Optimization methods are proposed as a solution. It is shown that application of optimization methods allows to obtain adequate model at that time decreasing number of modeling map basis functions.

Reference: 
  1. Demidenko EZ. Linear and nonlinear regression. Moscow: Finstat; 1981. 302 p. (In Russian).
  2. Fichtengoltz GM. Course of differential and integral calculus. Vol.3. Moscow: Fizmatlit; 2001. 582 p. (In Russian).
  3. Deistler M, Prohaska O, Reschenhofer E, Vollmer R. Procedure for different stages of EEG background activity and its application to the detection of drug effects. Electroenceph. clin. Neurophysiol. 1986;64(4):294–300. DOI: 10.1016/0013-4694(86)90152-5.
  4. Palus M. Nonlinearity in normal human EEG: Сycles, temporal asymmetry, non- stationarity and randomness, not chaos. Biol. Cybern. 1996;75(5):389–396. DOI: 10.1007/s004220050304.
  5. Kaplan AY. Nonstationary EEG: Methodological and experimental analysis. Progress in Physiological Science. 1998;29(3):50–55.
  6. Gribkov D, Gribkova V. Learning dynamics from nonstationary time series: Analysis of electroencephalograms. Phys. Rev. E. 2000;63(6):6538–6545. DOI: 10.1103/physreve.61.6538.
  7. Jefferys JGR. Basic mechanisms of focal epilepsies. Exp. Neurol. 1990;75(2):127–162. DOI: 10.1113/expphysiol.1990.sp003390.
  8. Kaplan AYa. Problems of segmental description of human EEG. Human Physiology. 1999;25(1):125–133.
  9. Barlow JS. Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: A comparative review. J. Clin. Neurophysiol. 1985;2(3):267–304. DOI: 10.1097/00004691-198507000-00005.
  10. Sysoeva MV, Sysoev IV. Mathematical modeling of encephalogram dynamics during epileptic seizure. Technical Physics Letters. 2012;38(2):151-154. DOI: 10.1134/S1063785012020137.
  11. Filina EV. Dynamics of local potentials of brain at the absence-epilepsy: empirical modelling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(4):109-123. DOI: 10.18500/0869-6632-2011-19-4-109-123.
  12. Sysoeva MV, Dikanev TV, Sysoev IV, Bezruchko BP. ANALYSIS OF COUPLING BETWEEN RAT ELECTROENCEPHALOGRAM CHANNELS BEFORE AND DURING EPILEPTIC SEIZURE USING PREDICTIVE MODELS. Vestnik of Lobachevsky University of Nizhni Novgorod. 2013;1-1:73–78.
  13. Chepurnov SA, Aristov AV, Berdiev RK, Abbasova KR, Chepurnova NE. A PERSPECTIVE OF PRESENT APPROACHES TO EEG ANALYSES PERFORMED WITH INTENTION TO FIND SEIZURE PREDICTORS. Progress in Physiological Science. 2010;41(4):27–44.
  14. Sitnikova EY, Koronovskii AA, Hramov AE. Analysis of epileptic activity of brain in case of absence epilepsy: applied aspects of nonlinear dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):173-182. DOI: 10.18500/0869-6632-2011-19-6-173-182.
  15. Sitnikova YU, Grubov BV, Hramov AE, Koronovsky AA. Developmental changes in the frequency-time structure of sleep spindles on the EEG in rats with a genetic predisposition to absence epilepsy (WAG/Rij). Neuroscience and Behavioral Physiology. 2014;44(3):301–309. DOI: 10.1007/s11055-014-9910-9.
  16. Grubov VV, Sitnikova ЕY, Nazimov AI, Runnova AE, Khramova MV, Khramov AE. STUDYING OF AGE-RELATED DYNAMICS OF SLEEP SPINDLES TIME-FREQUENCY STRUCTURE ON EEG OF RATS WITH GENETIC PREDISPOSITION TO ABSENCE-EPILEPSY. Journal Tambov University Reports. Series Natural and Technical Sciences. 2013;18(4-1):1288–1291.
  17. Grubov VV, Ovchinnikov AA, Sitnikova EY, Koronovskii AA, Hramov AE. Wavelet analysis of sleep spindles on EEG and development of method for their automatic diagnostic. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(4):91-108. DOI: 10.18500/0869-6632-2011-19-4-91-108.
  18. Bezruchko BP, Smirnov DA. Mathematical modeling and chaotic time series. Saratov: Kolledg; 2005. 320 p. (In Russian).
  19. Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978;6(2):461–464. DOI: 10.1214/aos/1176344136.
  20. Kobzar AI. Applied mathematical statistics. Moscow: Fizmatlit; 2006. 658 p. (In Russian).
  21. Larose DT. Data mining methods and models. Wiley: IEEE Press; 2006. 385 p.
  22. Gmurman VE. Probability theory and mathematical statistics: Textbook for universities. Moscow: Vyshaya shkola.; 1972. 327 p. (In Russian).
Received: 
08.04.2013
Accepted: 
15.07.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 72)