ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sysoeva M. V., Medvedeva T. M. Optimization of Granger causation method parameters for the study of limbic epilepsy. Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, iss. 5, pp. 39-62. DOI: 10.18500/0869-6632-2018-26-5-39-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 417)
Language: 
Russian
Article type: 
Article
UDC: 
530.182, 51-73

Optimization of Granger causation method parameters for the study of limbic epilepsy

Autors: 
Sysoeva Marina Vyacheslavovna, Yuri Gagarin State Technical University of Saratov
Medvedeva T.  M., Federal State Budgetary Institution of Science "Institute of Higher Nervous Activity and Neurophysiology RAS"
Abstract: 

Purpose. The aim is to reveal the dependence of Granger causality results on chosen time scales of constructed empirical models in application to the task of investigation of evolution of coupling between brain areas during limbic seizures. Methods. We use combination of methods for coupling analysis of the experimental time series and approaches to modeling from the first principles, which reproduce the main time and frequency properties of the experimental signals. Such a combination use is novel for investigation of the connectivity between the brain areas from intracranial electroencephalogram. In this paper, it is used for connectivity analysis in limbic epilepsy provoked in WAG/Rij rats by the introduction of endocannabinoid receptor agonist. Results. In ensembles of four coupled van der Pol oscillators with the Toda potential and hard excitation, Hindmarsh–Rose systems and FitzHugh–Nagumo systems we found regimes reproducing spectral and amplitude characteristics of the series of local potentials at the limbic seizures. Optimal method parameters were selected to target both sensitivity and specificity of Granger causality. Using these parameters, a significant increase in coupling was detected in the experimental data of WAG/Rij rats from the occipital cortex to the hippocampus during limbic seizures approximately 2 s before the seizure onset. The coupling return to background level immediately after the seizure termination. Discussion. Reliability of coupling detection procedure outcomes is a key problem in applying the Granger causality method to experimental data. Increasing the method sensitivity and method specificity is possible in various ways, including increasing experimental data amount and adapting method parameters to the signal spectral properties, but none of these approaches solves the problem completely. In our opinion, the proposed approach, based on the construction of oscillator ensembles generating signals qualitatively similar to experimental ones, allows us to make significant progress in this direction.

Reference: 
  1. Bezruchko B.P., Smirnov D.A. Extracting Knowledge From Time Series. Berlin: Springer, 2010.
  2. Granger C.W.J. Investigating Causal Relations by Econometric Models and Cross- Spectral Methods. Econometrica, 1969, vol. 37(3), p. 424–438.
  3. van Rijn C., Gaetani S., Santolini I., Badura A., Gabova A., Fu J., Watanabe M., Cuomo V., van Luijtelaar G., Nicoletti F., Ngomba R. WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges. Epilepsia, 2010, vol. 51(8), p. 1511–1521.
  4. Lüttjohann A., van Luijtelaar G. The dynamics of cortico-thalamo-cortical interac- tions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiology of Disease, 2012, vol. 47, p. 47–60.
  5. Lüttjohann A., Schoffelen J., van Luijtelaar G. Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses // Neurobiology of Disease, 2014, vol. 70, p. 127–137.
  6. Kolosov A.V., Nuidel I.V., Yakhno V.G. Research of dynamic modes in the mathe- matical model of elementary thalamocortical cell // Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24(5), p. 72–83. (in Russian)
  7. Blumenfeld H., Varghese G., Purcaro M., Motelow J., Enev M., McNally K., Levin A., Hirsch L., Tikofsky R., Zubal I., Paige A., Spencer S. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain, 2009, vol. 1324, p. 999–1012.
  8. Wallace M., Blair R., Falenski K., Martin B., De Lorenzo R. The endogeneous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol. Exp. Ther., 2003, vol. 307, p. 129–137.
  9. Haneef Z., Lenartowicz A., Yeh H., Levin H., Engel J., Stern J. Functional connec- tivity of hippocampal networks in temporal lobe epilepsy. Epilepsia, 2014, vol. 551, p. 137–145.
  10. Ding M., Chen Y., Bressler S. Granger causality: basic theory and application to neuroscience – Handbook of time series analysis. In: «Handbook of Time Series Analysis: Recent Theoretical Developments and Applications», edited by Björn Schelter, Matthias Winterhalder, Jens Timmer, 2006, Wiley-VCH Verlag GmbH & Co. KGaA.
  11. Chen Y., Rangarajan G., Feng J., Ding M. Analyzing Multiple Nonlinear Time Series with Extended Granger Causality. Physics Letters A., 2004, vol. 324(1), p. 26–35.
  12. Marinazzo D., Pellicoro M., Stramaglia S. Nonlinear parametric model for Granger causality of time series. Phys. Rev. E., 2006, vol. 73, 066216.
  13. Marinazzo D., Pellicoro M., Stramaglia S. Kernel Method for Nonlinear Granger Causality. Phys. Rev. Lett., 2008, vol. 100, 144103.
  14. Lehnertz K., Andrzejak R., Arnhold J., Kreuz T., Mormann F., Rieke C., Widman G., Elger C. Nonlinear EEG Analysis in Epilepsy: Its Possible Use for Interictal Focus Localization, Seizure Anticipation and Prevention. Journal of Clinical Neurophysio- logy, 2001, vol. 18(3), p. 209–222.
  15. Gourévitch B., Le Bouquin-Jeannés R., Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biological Cybernetics, 2006, vol. 95, p. 349–369.
  16. Pereda E., QuianQuiroga R., Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 2005, vol. 77(1), p. 1–37.
  17. Cekic S., Grandjean D., Renaud O. Time, frequency and time-varying causality measures in Neuroscience. Statistics in Medicine, 2018, vol. 37(11), p. 1910–1931.
  18. Sysoeva M., Luttjohann A., van Luijtelaar G., Sysoev I. Dynamics of directional coupling underlying spike-wave discharges. Neuroscience, 2016, vol. 314, p. 75–89.
  19. Sysoeva M.V., Sitnikova E., Sysoev I.V. Thalamo-cortical mechanisms of initiation, maintenance and termination of spike-wave discharges at WAG/Rij rats. Zhurnal vysshei nervnoi deyatel’nosti im. I.P. Pavlova, 2016, vol. 66(1), p. 103–112. (in Russian)
  20. Sysoeva M.V., Vinogradova L.V., Kuznetsova G.D., Sysoev I.V., van Rijn C.M. Changes in cortico-cortical and cortico-hippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. Epilepsy & Behavior, 2016, vol. 64, p. 44–50.
  21. Sitnikova E., Dikanev T., Smirnov D., Bezruchko B., van Luijtelaar G. Granger causality: Cortico-thalamic interdependencies during absence seizures in WAG/Rij rats. Journal of Neuroscience Methods, 2008, vol. 170, p. 245–254.
  22. Sysoeva M.V., Sysoev I.V. Mathematical modeling of encephalogram dynamics during epileptic seizure. Technical Physics Letters, 2012, vol. 38(2), p. 151–154.
  23. Sysoeva M.V., Dikanev T.V. and Sysoev I.V. Selecting time scales for empirical model construction. Izvestiya VUZ, Applied Nonlinear Dynamics, 2012, vol. 20(2), p. 54–62. (in Russian)
  24. Kornilov M.V., Sysoev I.V. Influence of the choice of the model structure for working capacity of nonlinear Granger causality approach. Izvestiya VUZ, Applied Nonlinear Dynamics, 2013, vol. 21(2), p. 3–16. (in Russian)
  25. Sysoeva M.V., Sitnikova E., Sysoev I.V., Bezruchko B.P., van Luijtelaar G. Applica- tion of adaptive nonlinear Granger causality: Disclosing network changes before and after absence seizure onset in a genetic rat model. Journal of Neuroscience Methods, 2014, vol. 226, p. 33–41.
  26. Zou C., Feng J. Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics, 2009, vol. 10: 122.
  27. Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series. Phys. Rev. E., 2005, vol. 72, 016210.
  28. Sysoev I.V., Prokhorov M.D., Ponomarenko V.I., Bezruchko B.P. Reconstruction of ensembles of coupled time-delay system from time series. Phys. Rev. E., 2014, vol. 89, 062911.
  29. Sysoev I.V., Sysoeva M.V. Detecting changes in coupling with Granger causality method from time series with fast transient processes. Physica D: Nonlinear Phe- nomena, 2015, vol. 309, p. 9–19.
  30. Bezruchko B.P., Smirnov D.A., Zborovsky A.B., Sidak E.V., Ivanov R.N., Bespyatov A.B. Reconstruction of the time series and diagnostic problems. Technologies of living systems, 2007, vol. 4(3), p. 49–56. (in Russian)
  31. Besruchko B.P., Smirnov D.A. Constructing nonautonomous differential equations from experimental time series. Phys. Rev. E., 2000, vol. 63, 016207.
  32. Smirnov D.A., Sysoev I.V., Seleznev Ye.P., Bezruchko B.P. Reconstructing nonauto- nomous system models with discrete spectrum of external action. Technical Physics Letters, 2003, vol. 29(10), p. 824–827.
  33. Packard N., Crutchfield J., Farmer J., Shaw R. Geometry from a Time Series. Phys. Rev. Lett., 1980, vol. 45, p. 712–716.
  34. Legendre A. Appendice sur la methodes des moindres quarres. Nouvelles methodes pour la determination des orbites des cometes. Paris: Firmin-Didot. 1805. (in French).
  35. Smirnov D.A. Bezruchko B.P. Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series. Europhys. Lett., 2012, vol. 100, 10005.
  36. Smirnov D.A. Mokhov I.I. From Granger causality to long-term causality: Applica- tion to climatic data. Physical Review E., 2009, vol. 80, 016208.
  37. Hesse W., Möller E., Arnold M., Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 2003, vol. 124, p. 27–44.
  38. Kornilov M.V., Medvedeva T.M., Bezruchko B.P., Sysoev I.V. Choosing the optimal model parameters for Granger causality in application to time series with main timescale. Chaos, Solitons & Fractals, 2016, vol. 82, p. 11–21.
  39. Schwarz G. Estimating the Dimension of a Model. The Annals of Statistics. 1978, vol. 6(2), p. 461–464.
  40. Rosenstein M., Collins J., De Luca C. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D., 1993, vol. 6, p. 117–134.
  41. Student. The probable error of a mean. Biometrika, 1908, 6(1), p. 1–25.
  42. Suffczynski P., Kalitzin S., Lopes da Silva F.H. Dynamic sofnon-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 2004, vol. 126, p. 467–484.
  43. Sysoeva M.V., Kuznetsova G.D., Sysoev I.V. Modelling EEG signals from rats when analysing absence epilepsy in application to analysis of coupling between brain areas. Biophysics, 2016, vol. 61(4), p. 661–669.
  44. Jeanne T. Paz, John R. Huguenard. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nature Neuroscience, 2015, vol. 18, iss. 3, pp. 351–359. Doi: 10.1038/nn.3950.
Received: 
29.03.2018
Accepted: 
27.05.2018
Published: 
31.10.2018
Short text (in English):
(downloads: 70)