ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuznetsov A. S. Parametric generators with chaotic amplitude dynamics corresponding to attractors of smale–williams type. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 129-136. DOI: 10.18500/0869-6632-2012-20-1-129-136

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 132)
Article type: 

Parametric generators with chaotic amplitude dynamics corresponding to attractors of smale–williams type

Kuznetsov Aleksej Sergeevich, Saratov State University

A new approach is considered to design of parametric generators of chaos with hyperbolic attractors on the basis of two alternately excited subsystems, each consisting of three oscillators, one of which plays the role of the pump source. In contrast to previously proposed schemes, the angular variable undergoing a multiple increase over each characteristic period is a quantity characterizing the amplitude ratio of two oscillators, rather then the phase of successive oscillation trains.

  1. Sinai YaG. Stochasticity of Dynamic Systems. In: Gaponov AV. Nonlinear Waves. Moscow: Nauka; 1979. (in Russian).
  2. Shilnikov L. Mathematical problems of nonlinear dynamics: а tutorial. Int. J. of Bifurcation and Chaos. 1997;7(9):1353–2001.
  3. Loskutov AYu. Fascination of chaos. Phys. Usp. 2010;53(12):1257–1280. DOI: 10.3367/UFNe.0180.201012d.1305.
  4. Kuznetsov SP. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Phys. Usp. 2011;54(2):119–144. DOI: 10.3367/UFNe.0181.201102a.0121.
  5. Kuznetsov SP. Hyperbolic Chaos: A Physicist’s View. Higher Education Press: Beijing and Springer-Verlag: Berlin, Heidelberg; 2012. 336 p.
  6. Kuznetsov SP. On the feasibility of a parametric generator of hyperbolic chaos. Journal of Experimental and Theoretical Physics. 2008;106(2):380–387. DOI: 10.1007/s11447-008-2016-x.
  7. Kuznetsov AS, Kuznetsov SP, Sataev IR. Parametric generator of hyperbolic chaos based on two coupled oscillators with nonlinear dissipation. Tech. Phys. 2010;55:1707–1715. DOI: 10.1134/S1063784210120017.
  8. Isaeva OB, Kuznetsov SP, Mosekilde E. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation. Phys. Rev. 2011;84:016228. DOI: 10.1103/PhysRevE.84.016228.
  9. Kuznetsov SP. Dynamic chaos. 2nd ed. Moscow: Fizmatlit; 2006. 356 p. (in Russian).
Short text (in English):
(downloads: 88)