ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Kornienko V. N., Kulagin V. V., Cherepenin V. A. Peculiarities for space-­time structure of powerful electromagnetic pulses formed with thin plasma layers. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 156-164. DOI: https://doi.org/10.18500/0869-6632-2012-20-5-156-164

Language: 
Russian

Peculiarities for space-­time structure of powerful electromagnetic pulses formed with thin plasma layers

Autors: 
Kornienko Vladimir Nikolaevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Kulagin Viktor Vladimirovich, P. K. Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University
Cherepenin Vladimir Alekseevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Abstract: 

Shaping of femtosecond laser pulses of petawatt level with plasma layers is analyzed. It is shown that, for electron density exceeding the critical density by several times, it is possible to generate asymmetrical pulse with the amplitude of the first half­cycle, which is practically equal to the maximal amplitude of the pulse. These pulses are necessary for effective generation of relativistic electron mirrors. Spatial structure of the pulse transmitted through a plasma layer is corresponding qualitatively to the field structure after diffraction of the same initial pulse on a slit. It is shown that supergaussian pulses are more preferable for shaping with respect to pulses of Gaussian shape because the output pulse in this case have sharper fronts and more homogeneous distribution of the field in transverse direction.

DOI: 
10.18500/0869-6632-2012-20-5-156-164
References: 

1. Kulagin V.V., Cherepenin V.A., Hur M.S., Suk H. Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm // Phys. Rev. Lett. 2007. 99. 124801. 2. Kulagin V.V., Cherepenin V.A., Gulyaev Y.V., Kornienko V.N., Pae K.H., Valuev V.V., Lee J., and Suk H. Characteristics of relativistic electron mirrors generated by an ultrashort nonadiabatic laser pulse from a nanofilm // Phys. Rev. E. 2009. Vol. 80. 016404. 3. Bulanov S.V. et al. Controlled wake field acceleration via laser pulse shaping // IEEE Trans. Plasma Sci. 1996. Vol. 24. 393. 4. Vshivkov V.A. et al. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil // Phys. Plasmas. 1998. Vol. 5. 2727. 5. Kulagin V.V., Cherepenin V.A., Hur M.S., Suk H. Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Transparency and shaping of laser pulses // Phys. Plasmas. 2007. Vol. 14. 113102. 6. Tushentsov M., Kim A., Cattani F., Anderson D., and Lisak M. Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser–plasma interactions // Phys. Rev. Lett. 2001. Vol. 87. 275002. 7. Lefebvre E. and Bonnaud G. Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse // Phys. Rev. Lett. 1995. Vol. 74. 2002. 8. Shen B. and Xu Z. Transparency of an overdense plasma layer // Phys. Rev. E. 2001. Vol. 64. 056406. 9. Goloviznin V. et al. Self-induced transparency and self-induced opacity in laser-plasma interactions// Phys. Plasmas. 2000. Vol. 7. 1564. 10. Cattani F., Kim A., Anderson D., and Lisak M. Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas // Phys. Rev. E. 2000. Vol. 62. 1234. 11. Eremin V.I., Korzhimanov A.V., and Kim A.V. Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation // Phys. Plasmas. 2010. 17. Vol. 4. 043102. 12. Nam I.H., Kulagin V.V., Hur M.S., Lee I.W., and Suk H. Generating nearly singlecycle pulses with increased intensity and strongly asymmetric pulses of petawatt level // Phys. Rev. E. 2012. Vol. 85. 026405.  

Short text (in English):