For citation:
Kuzmin L. V., Maksimov N. A., Panas A. I. Precision chaotic oscillator with piecewise-linear characteristic of nonlinear element. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 2, pp. 81-94. DOI: 10.18500/0869-6632-1999-7-2-81-94
Precision chaotic oscillator with piecewise-linear characteristic of nonlinear element
Precision chaotic oscillator with 1.5 degrees of freedom is considered. It consists of two linear and one nonlinear subsystems which are connected in series and closed in a loop. The nonlinear subsystem has five—segment piecewisc—linear amplitude characteristic. Typical chaotic modes of the oscillator are analyzed numericaily and in physical experiments. The use of special software Electronics Workbench (the electronic lab in a computer) for analysis of chaotic modes is demonstrated. The circuit shematic of the nonlinear subsystem is considered.
- Lorenz EN. Deterministic nonperiodic flow. J. Atm. Sci. 1963;20:130-148. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- Sinai YaG, Shilnikov LN, editors. Strange attractors. М.: Mir; 1981. 253 p. (in Russian).
- Dmitriev AS, Panas АI, Starkov SО. Dynamic chaos as a paradigm of modern communication systems. Telecommunications and Radio Engineering. 1997;10:4-26.
- Hasler М. Transmission of information using chaotic signals. Recent achievements. Telecommunications and Radio Engineering. 1998;11:33-42.
- Ресоrа LM, Саroll TL. Synchronization in Chaotic Systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Volkovskii AR, Rulkov NF. Synchronous chaotic response of a nonlinear oscillatory system as a principle of detecting the information component of chaos. Tech. Phys. Lett. 1993;9(3):72-77.
- Madan RN. Chua’s Circuits, а Paradigm for Chaos. Singapore: World Scientific; 1993. 1088 p. DOI: 10.1142/1997.
- Nishio Y, Mori S, Saito Т. An approach toward higher dimensional autonomous chaotic circuits. In: Proc. NDES’ 92. Vol. 2. Moscow, Russia. 1992. Р. 60.
- Rulkov NF. Images оf synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262-279. DOI: 10.1063/1.166174.
- Dmitriev AS, Panas АI. Strange attractors in ring self-oscillating systems with inertial links. Tech. Phys. 1986;56(4):759-762. (in Russian).
- Dmitriev AS, Panas АI. Quasi-periodic, resonance and chaotic regimes in ring self-oscillating systems. Radiophysics and Quantum Electronics. 1987;30(9):1085-1098. (in Russian).
- Dmitriev AS, Kislov VYa. Stochastic oscillations in radiophysics and electronics. M.: Nauka; 1989. 280 p. (in Russian).
- Dmitriev AS, Panas AL, Starkov SО. Ring oscillating systems аnd their application to the synthesis оf chaos generators. Int. J. Bifurc. Chaos. 1996;6(5):851-865. DOI: 10.1142/S0218127496000473.
- Dmitriev AS, Kislov VYa, Starkov SO. Experimental study of the formation and interaction of strange attractors in a ring autogenerator. Tech. Phys. 1985;55(12):2417-2419. (in Russian).
- Dmitriev AS, Starkov SO. Study of the chaotic dynamics of a ring autogenerator with an asymmetrical characterisation of a nonlinear element. Sov. J. Comm. Tech. Electron. 1986;31(12):2396-2405.
- Dmitriev AS, Panas AL, Starkov SO, Kuzmin LV. Experiments оn RF band communication using chaos. Int. J. Bifurc. Chaos. 1997;7(11):2511-2527. DOI: 10.1142/S0218127497001680.
- Dmitriev AS, Kuzmin LV, Panas AL, Starkov SO. Experiments on the transmission of information using chaos through a radio channel. J. Comm. Tech. Electron. 1998;43(9):1115-1128.
- 191 reads