ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. E., Setsinsky D. V., Ryazanova L. S. Resonance mechanism оf excitability in dynamics of coupled neurons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 5, pp. 58-71. DOI: 10.18500/0869-6632-2004-12-5-58-71

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9 621.373

Resonance mechanism оf excitability in dynamics of coupled neurons

Autors: 
Postnov Dmitrij Engelevich, Saratov State University
Setsinsky Dmitry Vyacheslavovich, Saratov State University
Ryazanova Ludmila Sergeevna, Saratov State University
Abstract: 

Dynamical features of different type neural models are ihvestigated. We explore the difference in excitability mechanisms with external periodic signal. We show features of deterministic dynamics of ensemble of two coupled systems. We study noise-induced effects in ensemble of two neurons.

Key words: 
Acknowledgments: 
The work was supported by the grants RFBR 04-02-10709, INTAS 01-2061, NOC REC-006, and grant Ministry of Education of the Russian Federation А03-2.9-362.
Reference: 

1. Longtin А, Chialvo DR. Stochastic and deterministic resonances for excitable Systems. Phys. Rev. Lett. 1998;81(18):4012–4015.

2. Longtin A. Effect of noise on the tuning propoerties of excitable systems. Chaos, Solitons and Fractals J. 2000;11:1835–1848.

3. Longtin А. Phase locking and resonances for stochastic excitable systems. Fluctuation and Noise Letters. 2002;2(3):L183–L203.

4. Yoshino K, Nomura T, Pakdaman K, Saro S. Synthetic analysis of periodically stimulated excitable and oscillatory membrane models. Phys. Rev. Е. 1999. Vol. 59(1). DOI: 10.1103/PhysRevE.59.956.

5. Pakdaman K. Periodically forced leaky integrate-and-fire model. Phys. Кеу. Е. 2001;63(4):041907. DOI: 10.1103/PhysRevE.63.041907.

6. Kazantsev VB. Selective communication and information processing by excitable systems. Phys. Rev. E. 2001;64(5):056210. DOI: 10.1103/PhysRevE.64.056210.

7. Izhikevich EM. Neural excitability, spiking and bursting. Int. J. оf Bifurcation and Chaos. 2000;10(6):1171–1266.

8. Izhikevich EM. Resonate-and-fire neurons. Neural Networks J. 2001;14:883–894.

9. Morris С, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981;35(1):193–213. DOI: 10.1016/S0006-3495(81)84782-0.

10. Scott AC. The electrophysics of a nerve fiber. Rev. Mod. Phys. 1975;47(2):487. DOI: 10.1103/RevModPhys.47.487.

11. Keener J, Sneyd J. Mathematical Physiology. New York: Springer; 1998:594–607.

12. Hodgkin AL, Huxley AF. A quantative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. London. 1952. Vol. 117 (4): 500–544. DOI: 10.1113/jphysiol.1952.sp004764.

13. Rinzel J, Ermentrout GB. Methods in Neuronal Modeling. Cambridge: MIT Press; 1989. 135–169.

14. Wang XJ. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to а chaotic saddle. Physica D. 1993;62:263–274. DOI: https://doi.org/10.1016/0167-2789(93)90286-A.

15. Mochlis J. Canards in а surface oxidation reaction. Nonliner Science. 2002;12(4):319–345. DOI: 10.1007/s00332-002-0467-3.

16. Postnov DE, Shishkin AB, Setsinsky DV. Stochastic dynamics excitable system B region of subthreshold oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;1(6):104–115.

17. Kopell N, Ermentrout GB, Whittington МА,Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Nat. Acad. Sci. USA. 2000; 97(4):1867–1872. DOI: 10.1073/pnas.97.4.1867.

18. Postnov D, Sosnovtseva O, Setsinsky D. Rhythmic activity of noisy neural Circuits. Fluctuation and Noise Letters. 3(3):1.275.

19. Pikovsky A, Kurths J. Coherent resonance in a noise driving excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PhysRevLett.78.775.

20. Longtin A. Autonomous stochastic resonance in bursting neurons. Phys. Rev. Е. 1997;55(1):868–876. DOI: 10.1103/PhysRevE.55.868.

21. Neiman А, Saparin РI, Stone L. Coherence resonance at noisy precursors of bifurcations in nonlinear systems. Phys. Rev. E. 1997;56:270–273; Lee SG, Neiman А, Kim S. Coherence resonance in а Hodgkin-Huxley neuron. Phys. Rev. Е. 1998;57:3292–3297.

22. Postnov DE, Sosnovtseva OV, Setsinsky DV, Borisov VS. Generation and synchronization of stochastic oscillations in coupled excitable systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(3):15.

23. Sosnoviseva OV, Setsinsky D, Fausboll А, Mosekilde Е. Transitions between beta and gamma rhythms in neural systems. Phys. Rev. Е. 2002;66:041901. DOI: 10.1103/PhysRevE.66.041901.

Received: 
15.03.2004
Accepted: 
27.10.2004
Published: 
23.03.2005