ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Morozova M. A., Matveev O. В. Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 534-553. DOI: 10.18500/0869-6632-003003

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
Language: 
Russian
Article type: 
Review
UDC: 
537.622.4, 537.87, 537.226.4, 621.315.592
EDN: 

Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals

Autors: 
Morozova Maria Aleksandrovna, Saratov State University
Matveev Oleg Валерьевич, Saratov State University
Abstract: 

Purpose of this work is to compile an overview of a new and fruitful scientific direction in magnonics, which grew out of the works of Ph.D., Professor Yuri Pavlovich Sharaevsky, and related to the study of resonant and nonlinear phenomena during the propagation of magnetostatic waves in ferromagnetic films, ferromagnetic films with periodic inhomogeneities (magnonic crystals), coupled (layered and lateral) ferromagnetic structures, as well as ferromagnetic structures with layers of a different physical nature (semiconductor, ferroelectric, piezoelectric, normal metal layers). Methods. Experimental and theoretical methods have been used to study spin-wave excitations in a wide class of structures with ferromagnetic layers. In particular, experimental radiophysical methods of microwave measurements and optical methods of Mandelstam-Brillouin spectroscopy. For the construction of theoretical models, the following methods are used: the method of coupled waves, the method of crosslinking magnetic permeability at the boundaries of layers, the method of transmission matrices, long-wave approximation. Results. The presented results are of general scientific importance for understanding the basic laws of the joint influence of coupling, periodicity and interactions of different physical nature (the influence on the magnetostatic wave of deformation in periodic structures with piezoelectric, electromagnetic wave in structures with ferroelectric, electric current in structures with semiconductor, spin current in structures with normal metal). In applied terms, the identified effects open up wide opportunities for creation of new devices of spin-wave electronics with the possibility of dynamic control of characteristics when changing the electric and magnetic fields, as well as the power of the input signal. Conclusions. The review of the most interesting results obtained by the authors together with Yuri Pavlovich and which are an ideological continuation of the foundations laid by him is given. 

Acknowledgments: 
This work was supported by Russian Science Foundation, grant №19-79-20121 (experimental studies) and Russian Foundation for Basic Research, grant №19-29-03049-mk (theoretical studies)
Reference: 
  1. Vashkovskii AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in Microwave Electronics. Saratov: Saratov University Publishing; 1993. 312 p. (in Russian).
  2. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  3. Barman A, Gubbiotti G, Ladak S, Adeyeye AO, Krawczyk M, Grafe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka VI, Hillebrands B, Nikitov SA, Yu H, Grundler D, Sadovnikov AV, Grachev AA, Sheshukova SE, Duquesne JY, Marangolo M, Csaba G, Porod W, Demidov VE, Urazhdin S, Demokritov SO, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak VV, Poimanov VD, Sahoo S, Sinha J, Yang H, Munzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo RA, Carlotti G, Kim JV, Stamps RL, Camley RE, Rana B, Otani Y, Yu W, Yu T, Bauer GEW, Back C, Uhrig GS, Dobrovolskiy OV, Budinska B, Qin H, van Dijken S, Chumak AV, Khitun A, Nikonov DE, Young IA, Zingsem BW, Winklhofer M. The 2021 magnonics roadmap. J. Phys. Condens. Matter. 2021;33(41):413001. DOI: 10.1088/1361-648X/abec1a.
  4. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevsky YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/UFNe.0185.201510m.1099.
  5. Nikitov SA, Safin AR, Kalyabin DV, Sadovnikov AV, Beginin EN, Logunov MV, Morozova MA, Odintsov SA, Osokin SA, Sharaevskaya AY, Sharaevsky YP, Kirilyuk AI. Dielectric magnonics: from gigahertz to terahertz. Phys. Usp. 2020;63(10):945–974. DOI: 10.3367/UFNe.2019.07.038609.
  6. Gulyaev YV, Nikitov SA. Magnonic crystals and spin waves in periodic structures. Doklady Physics. 2001;46(10):687–689. DOI: 10.1134/1.1415579.
  7. Chumak AV, Vasyuchka VI, Serga AA, Hillebrands B. Magnon spintronics. Nature Physics. 2015;11(6):453–461. DOI: 10.1038/nphys3347.
  8. Krawczyk M, Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter. 2014;26(12):123202. DOI: 10.1088/0953- 8984/26/12/123202.
  9. Sharaevskii YP, Morozova MA, Grishin SV. Magnetostatic waves in microwave electronics. In: Trubetskov DI, Hramov AE, Koronovskii AA, editors. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics. Vol. 2. Nonstationary and Chaotic Processes. Ch. 11. Moscow: Fizmatlit; 2009. P. 348–379 (in Russian).
  10. Chumak AV, Serga AA, Hillebrands B. Magnonic crystals for data processing. J. Phys. D. Appl. Phys. 2017;50(24):244001. DOI: 10.1088/1361-6463/aa6a65.
  11. Ustinov AB, Drozdovskii AV, Kalinikos BA. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 2010;96(14):142513. DOI: 10.1063/1.3386540.
  12. Sharaevsky YP, Sadovnikov AV, Beginin EN, Morozova MA, Sheshukova SE, Sharaevskaya AY, Grishin SV, Romanenko V, Nikitov SA. Coupled spin waves in magnonic waveguides. In: Demokritov SO, editor. Spin Wave Confinement: Propagating Waves. 2nd ed. Ch. 2. New York: CRC Press; 2017. P. 47–76. DOI: 10.1201/9781315110820-3.
  13. Khitun A, Bao M, Wang KL. Magnonic logic circuits. J. Phys. D. Appl. Phys. 2010;43(26):264005. DOI: 10.1088/0022-3727/43/26/264005.
  14. Nikitin AA, Nikitin AA, Kondrashov AV, Ustinov AB, Kalinikos BA, Lahderanta E. Theory of dual-tunable thin-film multiferroic magnonic crystal. J. Appl. Phys. 2017;122(15):153903. DOI: 10.1063/1.5000806.
  15. Bukharaev AA, Zvezdin AK, Pyatakov AP, Fetisov YK. Straintronics: a new trend in micro- and nanoelectronics and material science. Phys. Usp. 2018;61(12):1175–1212. DOI: 10.3367/UFNe. 2018.01.038279.
  16. Gulyaev YV, Nikitov SA. Surface magnetostatic wave propagation in ferrite films with a periodic semiconductor structure. Soviet Physics, Solid State. 1983;25(8):2515–2517 (in Russian).
  17. Sidorenko A. Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures. Cham: Springer; 2018. 270 p. DOI: 10.1007/978-3-319-90481-8.
  18. Zhou Y, Jiao H, Chen YT, Bauer GEW, Xiao J. Current-induced spin-wave excitation in Pt/YIG bilayer. Phys. Rev. B. 2013;88(18):184403. DOI: 10.1103/PhysRevB.88.184403.
  19. Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak AV. Reconfigurable nanoscale spin-wave directional coupler. Science Advances. 2018;4(1):e1701517. DOI: 10.1126/sciadv.1701517.
  20. Morozova MA, Sharaevskii YP, Sheshukova SE, Zhamanova MK. Investigation of self-action effects of magnetostatic waves in ferromagnetic structures in terms of the system of Schrodinger equations with coherent or incoherent coupling. Physics of the Solid State. 2012;54(8):1575–1583. DOI: 10.1134/S1063783412080227.
  21. Beginin EN, Morozova MA, Sharaevskii YP. Nonlinear effects of self-action of waves in 2D coupled ferromagnetic structures. Physics of the Solid State. 2010;52(1):79–86. DOI: 10.1134/ S1063783410010130.
  22. Sharaevskii YP, Malyugina MA, Yarovaya EV. Modulation instability of surface magnetostatic waves in ferromagnet-dielectric-ferromagnet structures. Tech. Phys. Lett. 2006;32(2):110–112. DOI: 10.1134/S1063785006020064.
  23. Morozova MA, Romanenko DV, Matveev OV, Grishin SV, Sharaevskii YP, Nikitov SA. Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films. J. Magn. Magn. Mater. 2018;466:119–124. DOI: 10.1016/j.jmmm.2018.06.077.
  24. Nikitov SA, Tailhades P, Tsai CS. Spin waves in periodic magnetic structures–magnonic crystals. J. Magn. Magn. Mater. 2001;236(3):320–330. DOI: 10.1016/S0304-8853(01)00470-X.
  25. Bukesov SA, Stalmakhov VS, Sharaevskii YP. Surfase magnetostatic waves in a structure with periodic boundaries. In: Abstracts of III All-Union School — Seminar «Spin wave Microwave Electronics». Krasnodar; 1987. P. 31–32 (in Russian).
  26. Morozova MA, Sharaevsky YP, Sheshukova SE. Mechanisms of formation of envelope solitons in periodic ferromagnetic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):111– 120 (in Russian). DOI: 10.18500/0869-6632-2010-18-5-111-120.
  27. Morozova MA, Sadovnikov AV, Matveev OV, Sharaevskaya AY, Sharaevskii YP, Nikitov SA. Band structure formation in magnonic Bragg gratings superlattice. J. Phys. D. Appl. Phys. 2020;53(39):395002. DOI: 10.1088/1361-6463/ab95c0.
  28. Morozova MA, Matveev OV, Sharaevskii YP, Nikitov SA, Sadovnikov AV. Nonlinear signal processing with magnonic superlattice with two periods. Appl. Phys. Lett. 2022;120(12):122407. DOI: 10.1063/5.0083133.
  29. Morozova MA, Grishin SV, Sadovnikov AV, Romanenko DV, Sharaevskii YP, Nikitov SA. Band gap control in a line-defect magnonic crystal waveguide. Appl. Phys. Lett. 2015;107(24):242402. DOI: 10.1063/1.4937440.
  30. Morozova MA, Sharaevskaya AY, Sadovnikov AV, Grishin SV, Romanenko DV, Beginin EN, Sharaevskii YP, Nikitov SA. Band gap formation and control in coupled periodic ferromagnetic structures. J. Appl. Phys. 2016;120(22):223901. DOI: 10.1063/1.4971410.
  31. Morozova MA, Grishin SV, Sadovnikov AV, Sharaevskii YP, Nikitov SA. Magnonic bandgap control in coupled magnonic crystals. IEEE Trans. Magn. 2014;50(11):4007204.DOI: 10.1109/ TMAG.2014.2321611.
  32. Morozova MA, Matveev OV, Sharaevskii YP. Pulse propagation in a nonlinear system on the basis of coupled magnonic crystals. Physics of the Solid State. 2016;58(10):1967–1974. DOI: 10.1134/S1063783416100243.
  33. Morozova MA, Matveev OV, Romanenko DV, Trukhanov AV, Mednikov AM, Sharaevskii YP, Nikitov SA. Nonlinear spin wave switches in layered structure based on magnonic crystals. J. Magn. Magn. Mater. 2020;508:166836. DOI: 10.1016/j.jmmm.2020.166836.
  34. Prokushkin VN, Sharaevskii YP. Surface magnetostatic waves in a ferrite structure with impedance boundaries. Soviet Journal of Communications Technology and Electronics. 1987;32(8):1750–1752 (in Russian).
  35. Prokushkin VN, Sharaevskii YP. Influence of reactive impedance load on magnetostatic waves characteristics. Journal of Communications Technology and Electronics. 1993;38(9):1551–1553 (in Russian).
  36. Morozova MA, Romanenko DV, Serdobintsev AA, Matveev OV, Sharaevskii YP, Nikitov SA. Magnonic crystal-semiconductor heterostructure: Double electric and magnetic fields control of spin waves properties. J. Magn. Magn. Mater. 2020;514:167202. DOI: 10.1016/j.jmmm.2020.167202.
  37. Matveev OV, Romanenko DV, Morozova MA. Linear and nonlinear effects in structures based on magnonic crystals and semiconductors. JETP Letters. 2022;115(6):343–347. DOI: 10.1134/ S0021364022100228.
  38. Morozova MA, Grishin SV, Sadovnikov AV, Romanenko DV, Sharaevskii YP, Nikitov SA. Tunable bandgaps in layered structure magnonic crystal–ferroelectric. IEEE Trans. Magn. 2015;51(11): 2802504. DOI: 10.1109/TMAG.2015.2446763.
  39. Morozova MA, Matveev OV, Sharaevskii YP, Nikitov SA. Tuning the bandgaps in a magnonic crystal–ferroelectric–magnonic crystal layered structure. Physics of the Solid State. 2016;58(2):273– 279. DOI: 10.1134/S1063783416020207.
  40. Grachev AA, Matveev OV, Mruczkiewicz M, Morozova MA, Beginin EN, Sheshukova SE, Sadovnikov AV. Strain-mediated tunability of spin-wave spectra in the adjacent magnonic crystal stripes with piezoelectric layer. Appl. Phys. Lett. 2021;118(26):262405. DOI: 10.1063/5.0051429.
  41. Morozova MA, Matveev OV, Romanenko DV, Sharaevskii YP, Nikitov SA. Spin wave device for directional coupling of microwave signals of different power level. Patent No. 2702916 С1 Russian Federation, IPC H01P 1/22 : appl. 07.05.2019 : publ. 14.10.2019. Assignee: Kotel’nikov Institute of Radio Engineering and Electronics of RAS. 13 p. (in Russian).
  42. Beginin EN, Sadovnikov AV, Popov PA, Sharaevskaya AY, Kalyabin DV, Stognii AI, Morozova MA, Nikitov SA. Functional component of magnonics based on a multi-layered ferromagnetic structure. Patent No. 2702915 С1 Russian Federation, IPC H01P 1/218 : appl. 25.01.2019 : publ. 14.10.2019. Assignee: Kotel’nikov Institute of Radio Engineering and Electronics of RAS. 11 p. (in Russian).
  43. Morozova MA, Matveev OV, Romanenko DV, Mednikov AM. Nanoscale multiferroics for magnonic neuromorphic architecture. Nanoindustry. 2021;14(S7(107)):685–687 (in Russian). DOI: 10.22184/1993-8578.2021.14.7s.685.687.
Received: 
04.06.2022
Accepted: 
23.06.2022
Published: 
30.09.2022