ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Polezhaev A. A., Borina M. Y. Spatial-temporal patterns in active medium caused by diffusion instability. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 116-129. DOI: 10.18500/0869-6632-2014-22-2-116-129

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 249)
Article type: 

Spatial-temporal patterns in active medium caused by diffusion instability

Polezhaev Andrej Aleksandrovich, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Borina Marija Yurevna, P.N. Lebedev Physical Institute of the Russian Academy of Sciences

The results of investigation of reaction-diffusion type models demonstrating diffusion instability are presented. In particular, in general case the condition for both Turing and wave instabilities are obtained for  three equations of this type with the diagonal diffusion matrix. Qualitative properties of the system, in which bifurcations of each of the two types can take place, are clarified. Investigation of a set of amplitude equations, describing interaction of several modes which became unstable due to the wave bifurcation, is carried out. It is shown that as a result of competition between modes depending on the value of the parameter defining the strength of interaction only two regimes are possible: either quasi one-dimensional travelling waves (there exists only one nonzero mode) or standing waves (all the modes are nonzero). A possible mechanism for the transition from standing waves to traveling waves with a half wavelength, observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol microemulsion, is considered.

  1. Nikolis G, Prigozhin I. Self-organization in non-equilibrium systems. Moscow: Mir; 1979. 512 p. (In Russian).
  2. Prigozhin I. From existing to emerging. Moscow: Nauka; 1985. 327 p. (In Russian).
  3. Hacken G. Synergetics. Moscow: Mir; 1980. 406 p. (In Russian).
  4. Zhabotinsky AM. A history of chemical oscillations and waves. Chaos. 1991;1(4):379–386. DOI: 10.1063/1.165848
  5. Fields RJ, Burger M. Oscillations and travelling waves in chemical systems. New York: Wiley; 1985. 681 p.
  6. Kapral R, Showalter K. Chemical waves and patterns. Dordrecht: Kluwer; 1995. 524 p.
  7. Castets V, Dulos E, Boissonade J, Kepper PD. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 1990;64(24):2953–2953. DOI: 10.1103/PhysRevLett.64.2953
  8. Vanag VK, Epstein IR. Pattern formation in a tunable medium: The Belousov– Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 2001;87(22):228301. DOI: 10.1103/PhysRevLett.87.228301
  9. Gong Y, Christini DJ. Antispiral waves in reaction-diffusion systems. Phys. Rev. Lett. 2003;90(8):088302. DOI: 10.1103/PhysRevLett.90.088302
  10. Vanag VK, Epstein IR. Packet waves in a reaction-diffusion system. Phys. Rev. Lett. 2002;88(8):088303. DOI: 10.1103/PhysRevLett.88.088303
  11. Vanag VK, Epstein IR. Dash waves in a reaction-diffusion system. Phys. Rev. Lett. 2003;90(9):098301. DOI: 10.1103/PhysRevLett.90.098301
  12. Yang L, Berenstein I, Epstein IR. Segmented waves from a spatiotemporal transverse wave instability. Phys. Rev. Lett. 2005;95(3):038303. DOI: 10.1103/PhysRevLett.95.038303
  13. Vanag VK, Epstein IR. Resonance-induced oscillons in a reaction-diffusion system. Phys. Rev. E. 2006;73(1):016201. DOI:10.1103/PhysRevE.73.016201
  14. Vanag VK. Waves and patterns in reaction–diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions. UFN. 2004;174(9):991–1010.
  15. Turring AM. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1952;237:37–72.
  16. Kaminaga A, Vanag V, Epstein I. Wavelength halving in a transition between standing waves and traveling waves. Phys. Rev. Lett. 2005;95(5):058302. DOI: 10.1103/PhysRevLett.95.058302
  17. Yelenin GG, Kurkina ES. Turing's instability of three-component systems of diffusion-reaction type. Reaction (NO+CO)/Pt(100). Matem. Mod. 1994;6(8):17–32.
  18. Borina MYu, Polezhaev AA. Diffusion instability in a threevariable reaction–diffusion model. Computer Research and Modeling. 2011;3(2):135–146.
  19. Gantmacher F.R. Matrix Theory. Moscow: Nauka; 1967. 576 p. (In Russian).
  20. Zhabotinsky AM, Dolnik M, Epstein IR, Rovinsky AB. Spatio-temporal patterns in a reaction-diffusion system with wave instability. J. Chem. Science. 2000;55(2):223–231. DOI:10.1016/S0009-2509(99)00318-8
  21. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer- Verlag; 1984. 156 p.
  22. Nicolis G. Introduction to nonlinear science. New-York: Cambridge University Press; 1995. 254 p.
  23. Borina MJ, Polezhaev AA. Spatial-temporal patterns in a multidimensional active medium formed due to polymodal interaction near the wave bifurcation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(6):15-24. DOI: 10.18500/0869-6632-2012-20-6-15-24.
  24. Gierer A, Meinhardt H. A theory of biological pattern formation. Kibernetik. 1972;12(1):30–39. DOI:10.1007/BF00289234
  25. Deane AE, Knobloch E, Toomre J. Traveling waves and chaos in thermosolutal convection. Phys. Rev. E. 1987;36(6):2862–2869. DOI:10.1103/PhysRevA.36.2862
  26. Boronska K, Tuckerman LS. Standing and travelling waves in cylindrical Rayleigh–Benard convection. J. Fluid Mech. 2006;559:279–298. DOI:10.1017/S0022112006000309
  27. Rehberg I, Rasenat S, Fineberg J, de la Torre Juarez M, Steinberg V. Temporal modulation of traveling waves. Phys. Rev. Lett. 1988;61(21):2449–2452. DOI: 10.1103/PhysRevLett.61.2449
  28. Marts B, Lin AL. Transition from traveling to standing waves in the 4:1 resonant Belousov–Zhabotinsky reaction. Phys. Rev. Lett. E. 2008;77(2):026211. DOI: 10.1103/PhysRevE.77.026211
  29. Borina MYu, Polezhaev AA. About the mechanism of switching between standing and traveling waves is accompanied by a halving of the wavelength. Computer Research and Modeling. 2012;4(4):673–679.
  30. Romanovsky YuM, Stepanova NV, Chernavsky DS. Mathematical biophysics. Moscow: Nauka; 1984. 304 p. (In Russian).
Short text (in English):
(downloads: 72)