ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Tikhonov V. V., Gubanov V. A. Spin-wave diagnostics of epitaxial ferrite-dielectric structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 592-604. DOI: 10.18500/0869-6632-003005, EDN: TTGDKE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 

Spin-wave diagnostics of epitaxial ferrite-dielectric structures

Tikhonov Vladimir Vasil'evich, Saratov State University
Gubanov Vladislav Andreevich, Saratov State University

Purpose of this study is to elucidate the mechanism of transformation of electromagnetic and exchange spin waves (ESW) in a thin transition layer of epitaxial ferrite–dielectric structures, as well as to investigate the possibilities of using short-wave ESW to diagnose magnetic inhomogeneities of epitaxial yttrium-iron garnet (YIG) films. Methods. In this paper, we study the hybridization processes of electromagnetic and exchange spin waves that occur in the transition layer of the YIG film. The features of the dispersion of coupled waves in the vicinity of phase synchronism frequencies under normal and tangential magnetization of the YIG film are investigated. Results. It is shown that within of the thickness transition layer, the dispersion of the excited ESW experiences significant distortions, which manifests itself in frequency shifts of the spin-wave resonance. Based on this, a method for calculating the distribution of spontaneous magnetization over the thickness of the YIG film was proposed, which was used to simulate the processes of excitation of spin-wave resonances. Conclusion. The proposed technique of spin-wave diagnostics of YIG films can be effectively used for non-destructive testing of all types of epitaxial ferrite-dielectric structures, which may be in demand in the field of production and in the field of their practical application.

The research was funded by the Russian Science Foundation (project No. 20-79-10191)
  1.  Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 2010;464(7286):262–266. DOI: 10.1038/nature08876.
  2. Hirohata A, Yamada K, Nakatani Y, Prejbeanu IL, Dieny B, Pirro P, Hillebrands B. Reviewon spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020;509:166711. DOI: 10.1016/j.jmmm.2020.166711.
  3. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevsky YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/UFNe.0185.201510m.1099.
  4. Barman A, Gubbiotti G, Ladak S, Adeyeye AO, Krawczyk M, Grafe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka VI, Hillebrands B, Nikitov SA, Yu H, Grundler D, Sadovnikov AV, Grachev AA, Sheshukova SE, Duquesne JY, Marangolo M, Csaba G, Porod W, Demidov VE, Urazhdin S, Demokritov SO, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak VV, Poimanov VD, Sahoo S, Sinha J, Yang H, Munzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo RA, Carlotti G, Kim JV, Stamps RL, Camley RE, Rana B, Otani Y, Yu W, Yu T, Bauer GEW, Back C, Uhrig GS, Dobrovolskiy OV, Budinska B, Qin H, van Dijken S, Chumak AV, Khitun A, Nikonov DE, Young IA, Zingsem BW, Winklhofer M. The 2021 magnonics roadmap. J. Phys. Condens. Matter. 2021;33(41):413001. DOI: 10.1088/1361-648X/abec1a.
  5. Pirro P, Vasyuchka VI, Serga AA, Hillebrands B. Advances in coherent magnonics. Nat. Rev. Mater. 2021;6(12):1114–1135. DOI: 10.1038/s41578-021-00332-w.
  6. Akhiezer AI, Bar’jachtar VG, Peletminskii SV. Spin Waves. Amsterdam: North-Holland Publishing Company; 1968. 372 p.
  7. Bloch F. Zur Theorie des Ferromagnetismus. Z. Physik. 1930;61(3–4):206–219 (in German). DOI: 10.1007/BF01339661.
  8. Shone M. The technology of YIG film growth. Circuits Systems and Signal Process. 1985;4(1– 2):89–103. DOI: 10.1007/BF01600074.
  9. Yushchuk SI. Layered structure of epitaxial yttrium iron garnet films. Tech. Phys. 1999;44(12):1454– 1456. DOI: 10.1134/1.1259547.
  10. Park MB, Cho NH. Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce : YIG) films prepared by RF magnetron sputter techniques. J. Magn. Magn. Mater. 2001;231(2–3):253– 264. DOI: 10.1016/S0304-8853(01)00068-3.
  11. Tikhonov VV, Tolkachev AV. Linear excitation of exchange spin waves in implanted YIG films. Phys. Solid State. 1994;36:101–105.
  12. Temiryazev AG, Tikhomirova MP, Zilberman PE, Maryakhin AV. Excitation and propagation of exchange spin waves in ferrite films with nonuniformity of magnetic parameters across the film thickness. J. Phys. IV France. 1997;7(1):C1-395–C1-398. DOI: 10.1051/jp4:19971160.
  13. Tikhonov VV, Litvinenko AN. Spin-wave diagnostics of the magnetization distribution over the thickness of a ferrite film. Appl. Phys. Lett. 2019;115(7):072410. DOI: 10.1063/1.5098116.
  14. Tikhonov VV, Litvinenko AN. Exchange spin waves and their application for diagnostics of the layered structure of epitaxial YIG films. J. Magn. Magn. Mater. 2020;515:167241. DOI: 10.1016/j.jmmm.2020.167241.
  15. Mitra A, Cespedes O, Ramasse Q, Ali M, Marmion S, Ward M, Brydson RMD, Kinane CJ, Cooper JFK, Langridge S, Hickey BJ. Interfacial origin of the magnetisation suppression of thin film yttrium iron garnet. Scientific Reports. 2017;7(1):11774. DOI: 10.1038/s41598-017-10281-6.
  16. Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Berlin: Springer; 2007. 654 p. DOI: 10.1007/978-3-540-71488-0.