ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bobrov K. E., Iskoldsky A. M. Stability оf numerical estimations of time series characteristics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 1, pp. 127-136. DOI: 10.18500/0869-6632-2002-10-1-127-136

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
681.3, 519.67

Stability оf numerical estimations of time series characteristics

Autors: 
Bobrov Konstantin Evgenevich, The Institute of Electrophysics of the UB RAS
Iskoldsky Aleksandr Mihailovich, The Institute of Electrophysics of the UB RAS
Abstract: 

The numerical methods of a data analysis (finite ordered sequences of natural binary codes), corresponding to fragments оf trajectories, obtained by the numerical solving of а finite number of nonlinear ordinary differential equations are discussed. These equations represent the determined dissipative chaotic dynamic systems.

Measuring properties of such sequences are characterized by the estimation which assumes the code, obtained as a result of processing of source sequence of data by given algorithm, realized on the computer and not supposing the participation of the expert. The concept оf stability оf the estimation is formalized. The stability of obtained estimations in relation to numerically simulated small variations оf registration scheme parameters and to parameters of the algorithm of processing is investigated. Examples of data sequences with typical parameters (digit capacity, time step, length of sequence) for many real experiments are considered.

It is shown that estimation, obtained by the algorithm based on the analysis оf properties essentially depended оn behavior оf trajectory in every point, is unstable. At the same time, the estimation, obtained by the algorithm based on the analysis of properties, essentially depended оn some «average» for different points behavior оf trajectory, is stable.

Key words: 
Reference: 
  1. Volkov NV, Iskoldsky AM. On the analogy between the initial stages of the onset of turbulence and the electrical explosion of conductors. JETP Lett. 1990;51(11):560-562 (in Russian).
  2. Volkov NV, Zubarev NM, Zubareva OV, Shkatov VT. Dynamic current interruption and vortex structures in a current-carrying plasma-like medium. Tech. Phys. Lett. 1996;22(13):43-47 (in Russian).
  3. Packard NH, Crutchfield JР, Farmer JD, Shaw КS. Geometry from а time series. Phys. Rev. Lett. 1980;45(9):712-716. DOI: 10.1103/PhysRevLett.45.712.
  4. Broomhead DS, King СP. Extracting qualitative dynamics from experimental data. Physica D. 1986;20(2-3):217-236. DOI: 10.1016/0167-2789(86)90031-X.
  5. Takens F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980. Lect. Notes in Math. Vol. 898. N. Y.: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924.
  6. Sauer T, Yorke J, Casdagli M. Embedology. Journal of Statistical Physics. 1991;65(3-4):579-616. DOI: 10.1007/BF01053745.
  7. Malinetsky GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: Editorial URSS; 2000. 336 p. (in Russian).
  8. Lukashchuk SN, Predtechensky AA, Falkovich GE, Chernykh AI. On calculating the dimension of attractors from experimental data. Preprint No. 280. Institute of Automation and Electrometry. Novosibirsk; 1985 (in Russian).
  9. Lukashchuk SN, Falkovich GE, Chernykh AI. On calculating the dimension of attractors from experimental data. PMTF. 1989;(1(173)):99-104 (in Russian).
  10. Kennel MB, Brown R, Abarbanel НDI. Determining embedding dimension for phase-space reconstruction using а geometrical construction. Phys. Rev. А. 1992;45(6):3403-3411. DOI: 10.1103/physreva.45.3403.
  11. Abarbanel НDI, Kennel MВ. Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys. Rev Е. 1993;47(5):3057-3068. DOI: 10.1103/PhysRevE.47.3057.
  12. Schreiber T. Efficient neighbor searching in nonlinear time series analysis. Int. J. Bifurc. Chaos. 1995;5(2):349-358. DOI: 10.1142/S0218127495000296.
  13. Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. А. 1983;28(4):2591-2593. DOI: 10.1103/PhysRevA.28.2591.
  14. Grassberger Р, Procaccia I. Characterization оf strange attractors. Phys. Rev. Lett. 1983;50(5):346-349. DOI: 10.1103/PhysRevLett.50.346.
  15. Grassberger Р, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983;9(1-2):189-208. DOI: 10.1016/0167-2789(83)90298-1.
  16. Grassberger P, Procaccia I. Dimensions and Entropies of Strange Attractors from а Fluctuating Dynamics Approach. Physica D. 1983;13(1-2):34-54. DOI: 10.1016/0167-2789(84)90269-0.
  17. Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963;20(2):130-141.
  18. Russel DА, Hanson JD, Ott Е. Dimension of strange attractors. Phys. Rev. Lett. 1980;45(14):1175-1178. DOI: 10.1103/PhysRevLett.45.1175.
  19. Rossler ОЕ. An equation for continuous chaos. Phys. Lett. А. 1976;57(5):397-398. DOI: 10.1016/0375-9601(76)90101-8.
  20. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D. 1985;16(3):285-317. DOI: 10.1016/0167-2789(85)90011-9.
Received: 
04.07.2001
Accepted: 
17.05.2002
Available online: 
13.12.2023
Published: 
31.07.2002