ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shapoval A. B. Stability of a stationary critical state in a model of cluster formation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 45-55. DOI: 10.18500/0869-6632-2011-19-3-45-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 162)
Language: 
Russian
Article type: 
Article
UDC: 
517.937

Stability of a stationary critical state in a model of cluster formation

Autors: 
Shapoval Aleksandr Borisovich, Financial University under the Government of the Russian Federation
Abstract: 

The paper considers a self-organized critical process of clasterization. The stability of the equilibrium for infinite system of the differential equations approximating this process is proved.

Reference: 
  1. Kolmogorov AN. Local Structure of Turbulence in an Incompressible Fluid at Very High Reynolds Numbers. Proc. Acad. Sci. USSR. 1941;30(4)299–303 (in Russian).
  2. Frisch W. Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press; 1995. 312 p. DOI: 10.1017/CBO9781139170666.
  3. March TK, Chapman SC, Dendy RO, Merrifield JA. Off-axis electron cyclotron heating and the sandpile paradigm for transport in tokamak plasmas. Phys. Plasmas. 2004;11(2):659–665. DOI: 10.1063/1.1639017.
  4. Pisarenko VF, Rodkin MV. Heavy-Tailed Distributions: Applications to Catastrophe Analysis. Moscow: GEOS; 2007. 240 p. (in Russian).
  5. Bershadskii A and Sreenivasan KR. Multiscale self-organized criticality and powerful X-ray flares. Eur. Phys. J. B. 2003;35(4):513–515. DOI: 10.1140/epjb/e2003-00304-3.
  6. Amaral LAN, Cizeau P, Gopikrishnan P, Liu Y, Meyer M, Peng CK, Stanley HE. Econophysics: Can statistical physics contribute to the science of economics? Computer Physics Communications. 1999;121–122:145–152.
  7. Shuper VA. Self-Organization of Urban Settlement. Moscow: Nauka; 1995. 166 p. (in Russian).
  8. Bak P, Tang C, and Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 1987;59(4):381–384. DOI: 10.1103/PhysRevLett.59.381.
  9. Dhar D. Theoretical studies of self-organized criticality. Physica A. 2006;369(1):29–70. DOI: 10.1016/j.physa.2006.04.004.
  10. Hemmer PC and Hansen A. The distribution of simultaneous fiber failures in fiber bundles. ASME J. Appl. Mech. 1992;59(4):909–914. DOI: 10.1115/1.2894060.
  11. Hallgass R, Loreto V, Mazzella O, Paladin G, and Pietronero L. Earthquakes statistics and fractal faults. Phys. Rev. E. 1997;56(2):1346–1356. DOI: 10.1103/PhysRevE.56.1346.
  12. Carlson JM, Langer JS. Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 1989;62(22):2632–2635. DOI: 10.1103/physrevlett.62.2632.
  13. Blanter EM, Shnirman MG, Le Mouel JL, and Allegre CJ.  Scaling laws in blocks dynamics and dynamic self-organized criticality. Physics of the Earth and Planetary Interiors. 1997;99(3–4):295–307. DOI: 10.1016/S0031-9201(96)03195-0.
  14. Dhar D, Majumdar SN. Abelian sandpile model on the Bethe lattice. J. Physica A. 1990;23(19):4333. DOI: 10.1088/0305-4470/23/19/018.
  15. Gabrielov A, Newman WI, Turcotte DL. An exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling. Phys. Rev. E. 1999;60(5):5293–5300. DOI: 10.1103/PhysRevE.60.5293.
  16. Strahler AN. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union. 1957;38(6):913–920. DOI: 10.1029/TR038i006p00913.
  17. Malinetskii GG. Scenarios, strategic risks, information technology. Information Technology and Computing Systems. 2002;(4):83 (in Russian).
  18. Malinetskii GG, Podlazov AV, Kuznetsov IV. Monitoring, analysis and prediction of hazards as tasks of the national information system. Information Technology and Computing Systems. 2004;(4):119–124 (in Russian).
  19. Bak P. How Nature Works: The Science of Self-Organized Criticality. New York: Springer-Verlag; 1996. 205 p. DOI: 10.1007/978-1-4757-5426-1.
  20. Bak P and Paczuski M. Complexity, contingency, and criticality. Proceedings of the National Academy of Sciences of the USA. 1995;92(15):6689–6696. DOI: 10.1073/pnas.92.15.6689.
  21. Blanter EM, Shnirman MG, Le Mouel JL. Temporal variation of predictability in a hierarchical model of dynamical self-organized criticality. Physics of the Earth and Planetary Interiors. 1999;111(3–4):317–327. DOI: 10.1016/S0031-9201(98)00170-8.
  22. Shnirman MG, Shapoval AB. Variable predictability in deterministic dissipative sandpile. Nonlinear Processes in Geophysics. 2010;17(1):85–91. DOI: 10.5194/npg-17-85-2010.
  23. Keilis-Borok VI. Fundamentals of earthquake prediction: Four paradigms. In: Keilis-Borok VI, Soloviev AA, editors. Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer-Verlag, Heidelberg; 2003. P. 1–36. DOI: 10.1007/978-3-662-05298-3_1.
  24. Kuznetsov IV, Rodkin MV, Serebryakov DV, Uryadov OB. A hierarchical approach to the dynamics of crime. In: Malinetskii GG, editor. Collection of Articles. New in Synergetics. New Reality, New Problems, New Generation. Part 1. Moscow: Radiotekhnika; 2006. P. 103–118 (in Russian).
Received: 
07.07.2010
Accepted: 
10.01.2011
Published: 
29.07.2011
Short text (in English):
(downloads: 59)