ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Smirnov D. A., Navrotskaya E. V., Bezruchko B. P. Statistical properties of phase synchronization coefficient estimator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 2, pp. 111-121. DOI: 10.18500/0869-6632-2008-16-2-111-121

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 79)
Language: 
Russian
Article type: 
Article
UDC: 
530.18

Statistical properties of phase synchronization coefficient estimator

Autors: 
Smirnov Dmitrij Alekseevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Navrotskaya Elena Vladimirovna, Saratov State University
Bezruchko Boris Petrovich, Saratov State University
Abstract: 

A phase synchronization coefficient estimate, obtained from a time series, can take a high value even for uncoupled oscillators in the case of short signals and close basic frequencies. Since such situations are widespread in practice, it is necessary to detect them to avoid false conclusions about the presence of coupling. We investigate statistical properties of the estimator with the use of an exemplary system – uncoupled phase oscillators. Conditions leading to high probability to get big values of the estimator are determined quantitatively. Based on the performed analysis, we suggest a special technique for surrogate data generation to control statistical significance of the estimation results.

Key words: 
Reference: 
  1. Pikovsky A, Rosenblum M and Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, UK: Cambridge University Press; 2001. 411 p. DOI: 10.1017/CBO9780511755743.
  2. Anischenko VS, Astakhov V, Vadivasova T, Neiman A, Shimansky-Geyer L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin: Springer; 2007. 446 p. DOI: 10.1007/978-3-540-38168-6.
  3. Tass PA. Phase Resetting in Medicine and Biology – Stochastic Modelling and Data Analysis. Berlin: Springer; 1999. 329 p. DOI: 10.1007/978-3-540-38161-7.
  4. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R. Olivo-cerebellar cluster- based universal control system. Proc. Natl. Acad. Sci. USA. 2003;100(22):13064–13068. DOI: 10.1073/pnas.1635110100.
  5. Lopes da Silva F, Blanes W, Kalitzin SN, Parra J, Suffczynsky P, Velis DN. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44(Suppl. 12):72–83. DOI: 10.1111/j.0013-9580.2003.12005.x.
  6. Tass PA. A model of desynchronizing deep brain stimulation with a demand- controlled coordinated reset of neural subpopulations. Biological Cybernetics. 2003;89(2):81–88. DOI: 10.1007/s00422-003-0425-7.
  7. Janson NB, Balanov AG, Anishchenko VS, Mc-Clintock PVE. Phase synchronization between several interacting processes from univariate data. Phys. Rev. Lett. 2001;86(9):1749–1752. DOI: 10.1103/PhysRevLett.86.1749.
  8. Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detection of synchronization from univariate data using wavelet transform. Phys. Rev. E. 2007;75(5):056207. DOI: 10.1103/physreve.75.056207.
  9. Maraun D, Kurths J. Epochs of phase coherence between El Nino/Southern Oscillation and Indian monsoon. Geophys. Res. Lett. 2005;32(15):L15709. DOI: 10.1029/2005GL023225.
  10. Kraskov A. Synchronization and interdependence measures and their applications to the electroencephalogram of epilepsy patients and clustering of data. Dissertation (PhD thesis). Research Centre Julich, John von Neumann Institute for Computing (NIC Series. Vol. 24); 2004. 90 p. Available from: http://www.fz-juelich.de/nic-series/volume24/nic-series-band24.pdf.
  11. Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P. Measuring synchronization in coupled model systems: A comparison of different approaches. Physica D. 2007;225(1):29–42. DOI: 10.1016/j.physd.2006.09.039.
  12. Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D. 2000;144(3–4):358–369. DOI: 10.1016/S0167-2789(00)00087-7.
  13. Allefeld C, Kurths J. Testing for phase synchronization. Int. J. Bifurcat. Chaos. 2004;14(2):405–416. DOI: 10.1142/S021812740400951X.
  14. Schreiber T, Schmitz A. Surrogate time series. Physica D. 2000;142(3–4):346–382. DOI: 10.1016/S0167-2789(00)00043-9.
  15. Brea J, Russell DF, Neiman AB. Measuring direction in the coupling of biological oscillators: A case study for electroreceptors of paddlefish. Chaos. 2006;16(2):026111. DOI: 10.1063/1.2201466.
  16. Romano MC, Thiel M, Kurths J, Rolfs M, Engbert R, Kliegl R. Synchronization analysis and recurrence in complex systems. In: Chelter B, Wunterhalder M, Timmer J. Handbook of Time Series Analysis. Weinheim: Wiley-VCH Verlag; 2006. P. 231–264. DOI: 10.1002/9783527609970.ch10.
  17. Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization in regular and chaotic systems. Int. J. Bifurcat. Chaos. 2000;10(10):2291–2305. DOI: 10.1142/S0218127400001481.
  18. Dolan KT, Spano ML. Surrogate for nonlinear time series analysis. Phys. Rev. E. 2001;64(4):046128. DOI: 10.1103/PhysRevE.64.046128.
Received: 
14.11.2007
Accepted: 
14.11.2007
Published: 
30.04.2008
Short text (in English):
(downloads: 31)