ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Malyaev V. S., Vadivasova T. E., Anishchenko V. S. Stochastic resonance, stochastic synchronization and noise-induced chaos in the duffing oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 5, pp. 74-83. DOI: 10.18500/0869-6632-2007-15-5-74-83

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 352)
Article type: 

Stochastic resonance, stochastic synchronization and noise-induced chaos in the duffing oscillator

Malyaev Vladimir Sergeevich, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University

In present paper the following effects in nonlinear oscillator with final dissipation are studied: stochastic resonance, stochastic synchronization and noise-induced chaos. It is shown that stochastic resonance and stochastic synchronization at final dissipation have the same regularities as in the case of overdamped oscillator but are observed at a lower noise level. Equivalent characteristics of potential profile are introduced on the basis of numerically obtained Kramers frequency dependence on noise intensity that allow to apply to considered model the analytical relations, obtained for a overdamped oscillator. It is found that noise-induced transition to chaos in the oscillator with final dissipation can not influence on the stochastic resonance and stochastic synchronization as it is observed in other region of parameter values.

Key words: 
  1. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 1981;14:L453–L457. DOI: 10.1088/0305-4470/14/11/006.
  2. Moss F. Stochastic resonance: From the Ice Ages to the Monkey Ear. In: Contemporary Problems in Statistical Physics. Ed. by Weiss GH. Philadelphia: SIAM. 1994:205–253.
  3. Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S. Stochastic resonance in bistable systems. Phys. Rev. Lett. 1989;62:349–352. DOI: 10.1103/PhysRevLett.62.349.
  4. Anishchenko VS, Neiman AB, Moss F, Shimansky-Geier L. Stochastic resonance: noise-enhanced order. Phys. Usp. 1999;42(1):7–36.
  5. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman AB, Strelkova GI, Shimanskii-Gaier L. Nonlinear effects in chaotic and stochastic systems. Moscow-Izhevsk: Institute of Computer Sciences; 2003. 535 pp.
  6. Pikovsky A, Kurths J. Coherence resonance in a noisy driven excitable system. Phys. Rev. Lett. 1997;78:775–778. DOI: 10.1103/PhysRevLett.78.775.
  7. Neiman A, Saparin P, Stone L. Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Phys. Rev. E. 1997;56(1):270–273. DOI: 10.1103/PhysRevE.56.270
  8. Neiman AB. Synchronizationlike phenomena in coupled stochastic bistable systems. Phys. Rev. E. 1994;49:3484–3487. DOI: 10.1103/physreve.49.3484.
  9. Shulgin BV, Neiman AB, Anishchenko VS. Mean switching frequency locking in stochastic bistable systems driven by periodic force. Phys. Rev. Lett. 1995;75:4157–4160. DOI: 10.1103/PhysRevLett.75.4157.
  10. Han SK, Yim TG, Postnov DE, Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771–1774. DOI: 10.1103/PhysRevLett.83.1771.
  11. Schimansky-Geier L, Herzel H. Positive Lyapunov exponents in the Kramers oscillator. Journal of Statistical Physics. 1993;70:141–147. DOI: 10.1007/BF01053959.
  12. Arnold L, Imkeller P. Stochastic bifurcation of the noisy Duffing oscillator. Report. Institut fur Dynamische Systeme. Universit at Bremen; 2000.
  13. Lindner JF, Meadows BK, Ditto WL, Inchiosa ME, Bulsara AR. Array enhanсed stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett. 1995;75:3–6. DOI: 10.1103/PhysRevLett.75.3.
  14. Levin JE, Miller JP. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature. 1996;380:165–168. DOI: 10.1038/380165a0.
  15. Gailey PC, Neiman A, Collins JJ, Moss F. Stochastic resonance in ensembles of non-dynamical elements. The role of internal noise. Phys. Rev. Lett. 1997;79:4701–4704. DOI: 10.1103/PhysRevLett.79.4701.
  16. Zhang Y, Hu G, Gammaitoni L. Signal transmission in one-way coupled bistable systems: Noise effect. Phys. Rev. E. 1998;58(3):2952–2956. DOI: 10.1103/PhysRevE.58.2952.
  17. Pei X, Wilkens L, Moss F. Noise-mediated spike timing precision from aperiodic stimuli in an array of Hodgkin–Huxley-type neurons. Phys. Rev. Lett. 1996;77(2):4679–4682. DOI: 10.1103/PhysRevLett.77.4679.
  18. Neiman A, Pei X, Russell DF. Synchronization of the noisy electrosensitive cells in the paddlefish. Phys. Rev. Lett. 1999;82(3):660–663. DOI: 10.1103/PhysRevLett.82.660.
  19. Hu B, Zhou Ch. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E. 2000;61(2):R1001–R1004. DOI: 10.1103/physreve.61.r1001.
  20. Klimontovich YuL. What are stochastic filtering and stochastic resonance? Phys. Usp. 1999;42(1):37–44.
  21. Kovaleva A. Upper and lower bounds of stochastic resonance and noise-induced synchronization in a bistable oscillator. Phys Rev. E. 2006;74:011126. DOI: 10.1103/PhysRevE.74.011126.
  22. Hanggi P, Thomas H. Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 1982;88:207–319.
  23. Arnold L. Random dynamical systems. Berlin, Heidelberg, New-York: Springer-Verlag; 1998.
Short text (in English):
(downloads: 94)