ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kaschenko D. S. Synchronization in a system of two connected oscillators of the first order with relay delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 2, pp. 100-117. DOI: 10.18500/0869-6632-1997-5-2-100-117

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Synchronization in a system of two connected oscillators of the first order with relay delayed feedback

Autors: 
Kaschenko Dmitrij Sergeevich, P. G. Demidov Yaroslavl State University
Abstract: 

Using the numerical and analytical methods dynamics of two connected oscillators of the first order with relay delayed feedback is investigated. In the space of parameters the areas of «fast» and «long» synchronization are established. Question on synchronization on a unstable cycle is investigated. In case of small coefficients of diffusion by analytical methods it is shown, that dynamics of initial system is determined by dynamics of the special onedimentional map.

Key words: 
Reference: 
  1. Dmitriev АS. Chaos and information processing in nonlinear dynamical systems. J. Commun. Tech. Electron. 1993;38(1):1.
  2. Parlitz U, Chua LO, Kocarev L, Halle K, Shang А. Transmission оf Digital Signals by Chaotic Synchronization. Int. J. Bifurc. Chaos. 1992;2(4):973-977. DOI: 10.1142/S0218127492000562.
  3. Belskii YuL, Dmitriev AS. Transmission of information through deterministic chaos. J. Commun. Tech. Electron. 1993;38(7):1310-1315.
  4. Fujisaka H, Yamada Т. Stability theory of synchronized motion on coupled—oscillator systems IV. Progr. Theor. Phys. 1986;75(5):1087-1104. DOI: 10.1143/
    PTP.75.1087.
  5. Gaponov-Grekhov AV, Rabinovich МI, Starobinets IM. Dynamic model of spatial development of turbulence. JETP Lett. 1984;39(12):688-691.
  6. Anishchenko VS, Aranson NS, Postnov DE, Rabinovich MI. Spatial synchronization and bifurcation of chaos in the chain of connected generators. Soviet Phys. Doklady. 1986;286(5):1120-1124.
  7. Afraimovich VS, Verichev NN, Rabinovich МI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795-803. DOI: 10.1007/BF01034476.
  8. Kuznetsov YuI, Migulin VV, Minakova II, Silnov BA. Synchronization of chaotic oscillations. Soviet Phys. Doklady. 1984;275(6):1388-1391.
  9. Landa PS. Auto-oscillations in Distributed Systems. М.: Nauka; 1983. 320 p.
  10. Dmitriev AS, Kislov VYa. Stochastic Oscillations in Radiophysics and Electronics. М.: Наука 1989. 277 p.
  11. Kashchenko SA. Asymptotic analysis of the dynamics of a system of two coupled self-excited oscillators with delayed feedback. Radiophys. Quantum Electron. 1990;33(3):231-236. DOI: 10.1007/BF01057623.
  12. Kilias T, Kutzer K, Moegel А, Schwarz W. Electronic chaos generators — design and applications. Int. J. Electron. 1995;79(6): 737–753. DOI: 10.1080/00207219508926308.
  13. Moegel А, Schwarz W, Kaschenko S. Analysis and simulation principles for chaotic systems containing delay elements. In: NDES ‘96. Seville, Spain, 1996. P. 147-151.
Received: 
14.12.1996
Accepted: 
09.04.1997
Published: 
17.07.1997