ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Cite this article as:

Kruglov V. P. Technique and results of numerical test for hyperbolic nature of attractors for reduced models of distributed systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 79-93. DOI:


Technique and results of numerical test for hyperbolic nature of attractors for reduced models of distributed systems

Kruglov Vjacheslav Pavlovich, Saratov State University

A test of hyperbolic nature of chaotic attractors, based on an analysis of statistics distribution of angles between stable and unstable subspaces, is applied to reduced finite­dimensional models of distributed systems which are the modifications of the Swift–Hohenberg equation and Brusselator model, as well as to the problem of parametric excitation of standing waves by the modulated pump.


1. Кузнецов С.П. Динамический хаос и гиперболические аттракторы: от математики к физике. Москва; Ижевск: Институт компьютерных исследований, 2013. 488 с. 2. Кузнецов С.П. Динамический хаос и однородно гиперболические аттракторы: от математики к физике // Успехи физических наук. 2011. T.181, No 2. С. 121. 3. Синай Я.Г. Стохастичность динамических систем // В кн. Нелинейные волны. М.: Наука, 1979. С. 192. 4. Anishchenko V.S., Kopeikin A.S., Kurths J., Vadivasova T.E., Strelkova G.I. Studying hyperbolicity in chaotic systems // Physics Letters A. 2000. Vol. 270. P. 301. 5. Katok A., Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press, 1996. 6. Круглов В.П., Кузнецов А.С., Кузнецов С.П. Гиперболический хаос в системах с параметрическим возбуждением паттернов стоячих волн // Нелинейная динамика. Т.10, No3. 2014. c. 265-277. 7. Isaeva O.B., Kuznetsov A.S., Kuznetsov S.P. Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source // Phys. Rev. E. 2013. Vol.87. 040901. 8. Kruglov V.P., Kuznetsov S.P., Pikovsky A. Attractor of Smale–Williams type in an autonomous distributed system // Regular and Chaotic Dynamics. 2014. Vol. 19, No 4. P. 483. 9. Kruglov V.P. Attractor of Smale–Williams type in modified Brusselator model // Book of Abstracts. International Conference 19-23 May 2014, Saratov: Saratov State University. 2014. P. 26. 10. Kuptsov P.V., Kuznetsov S.P., Pikovsky A. Hyperbolic chaos of Turing patterns// Phys. Rev. Lett. 2012. Vol. 108. 194101. 11. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale–Williams type // Phys. Rev. Lett. 2005. Vol. 95. 144101. 12. Kuznetsov S.P. Some mechanical systems manifesting robust chaos // Nonlinear Dynamics and Mobile Robotics. 2013. Vol. 1, No 1. P. 3. 13. Cross M.C. and Hohenberg P.C. Pattern formation outside of equilibrium // Rev. Mod. Phys. 1993. Vol. 65, No 1. 1993. P. 851. 14. Lai Y.-C., Grebogi C., Yorke J.A., Kan I. How often are chaotic saddles nonhyperbolic? // Nonlinearity. 1993. Vol. 6. P. 779. 15. Kuptsov P.V., Parlitz U. Theory and computation of covariant Lyapunov vectors // Journal of nonlinear science. 2012. Vol. 22, No 5. P. 727. 16. Kuptsov P.V. Fast numerical test of hyperbolic chaos // Phys. Rev. E. 2012. Vol. 85, No 1. 015203. 17. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с. 18. Kuznetsov S.P., Mosekilde E., Dewel G., Borckmans P. Absolute and convective instabilities in a one-dimensional Brusselator flow model // The Journal of chemical physics. 1997. Vol. 106, No 18. P. 7609.

Short text (in English):
(downloads: 7)
Full text:
(downloads: 27)