ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kruglov V. P. Technique and results of numerical test for hyperbolic nature of attractors for reduced models of distributed systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 79-93. DOI: 10.18500/0869-6632-2014-22-6-79-93

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 120)
Language: 
Russian
Article type: 
Article
UDC: 
517.9:541.12+544.4

Technique and results of numerical test for hyperbolic nature of attractors for reduced models of distributed systems

Autors: 
Kruglov Vjacheslav Pavlovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

A test of hyperbolic nature of chaotic attractors, based on an analysis of statistics distribution of angles between stable and unstable subspaces, is applied to reduced finite­dimensional models of distributed systems which are the modifications of the Swift–Hohenberg equation and Brusselator model, as well as to the problem of parametric excitation of standing waves by the modulated pump.

Reference: 
  1. Kuznetsov SP. Dynamic Chaos and Hyperbolic Attractors: From Mathematics to Physics. Moscow; Izhevsk: Institute of Computer Research; 2013. 488 p. (in Russian).
  2. Kuznetsov SP. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Phys. Usp. 2011;54(2):119-144. DOI: 10.3367/UFNe.0181.201102a.0121.
  3. Sinai YG. Stochasticity of dynamic systems. In: Nonlinear Waves. Moscow: Nauka; 1979. P. 192 (in Russian).
  4. Anishchenko VS, Kopeikin AS, Kurths J, Vadivasova TE, Strelkova GI. Studying hyperbolicity in chaotic systems. Physics Letters A. 2000;270(6):301-307. DOI: 10.1016/S0375-9601(00)00338-8.
  5. Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press; 1996. 802 p.
  6. Kruglov VP, Kuznetsov AS, Kuznetsov SP. Hyperbolic chaos in systems with parametrically excited patterns of standing waves. Russian Journal of Nonlinear Dynamics. 2014;10(3):265-277 (in Russian). DOI: 10.20537/nd1403002.
  7. Isaeva OB, Kuznetsov AS, Kuznetsov SP. Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source. Phys. Rev. E. 2013;87(4):040901. DOI: 10.1103/physreve.87.040901.
  8. Kruglov VP, Kuznetsov SP, Pikovsky A. Attractor of Smale–Williams type in an autonomous distributed system. Regular and Chaotic Dynamics. 2014;19(4):483-494. DOI: 10.1134/S1560354714040042.
  9. Kruglov VP. Attractor of Smale–Williams type in modified Brusselator model. In: Book of Abstracts. International Conference, Saratov, 19-23 May 2014. Saratov: Saratov State University; 2014. P. 26 (in Russian).
  10. Kuptsov PV, Kuznetsov SP, Pikovsky A. Hyperbolic chaos of Turing patterns. Phys. Rev. Lett. 2012;108(19):194101. DOI: 10.1103/PhysRevLett.108.194101.
  11. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of the Smale–Williams type. Phys. Rev. Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  12. Kuznetsov SP. Some mechanical systems manifesting robust chaos. Nonlinear Dynamics and Mobile Robotics. 2013;1(1):3-22.
  13. Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993;65(3):851-1112. DOI: 10.1103/RevModPhys.65.851.
  14. Lai YC, Grebogi C, Yorke JA, Kan I. How often are chaotic saddles nonhyperbolic? Nonlinearity. 1993;6(5):779-797.
  15. Kuptsov PV, Parlitz U. Theory and computation of covariant Lyapunov vectors. Journal of Nonlinear Science. 2012;22(5):727-762. DOI: 10.1007/s00332-012-9126-5.
  16. Kuptsov PV. Fast numerical test of hyperbolic chaos. Phys. Rev. E. 2012;85(1):015203. DOI: 10.1103/PhysRevE.85.015203.
  17. Glensdorf P, Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley; 1971. 360 p.
  18. Kuznetsov SP, Mosekilde E, Dewel G, Borckmans P. Absolute and convective instabilities in a one-dimensional Brusselator flow model. The Journal of Chemical Physics. 1997;106(18):7609-7616. DOI: 10.1063/1.473763.
Received: 
25.12.2014
Accepted: 
25.12.2014
Published: 
30.04.2015
Short text (in English):
(downloads: 64)