ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Bandurkin I. V., Bratman V. L., Kalynov J. K., Manuilov V. N., Savilov A. V., Samsonov S. V. Terahertz gyrotrons at high cyclotron harmonics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 3, pp. 156-175. DOI: 10.18500/0869-6632-2008-16-3-156-175

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 134)
Article type: 
537.87, 621.385.69, 621.374

Terahertz gyrotrons at high cyclotron harmonics

Bandurkin Ilja Vladimirovich, Institute of Applied Physics of the Russian Academy of Sciences
Bratman Vladimir Lvovich, Institute of Applied Physics of the Russian Academy of Sciences
Kalynov Jurij Konstantinovich, Institute of Applied Physics of the Russian Academy of Sciences
Manuilov Vladimir Nikolaevich, Lobachevsky State University of Nizhny Novgorod
Savilov Andrej Vladimirovich, Institute of Applied Physics of the Russian Academy of Sciences
Samsonov Sergej Viktorovich, Institute of Applied Physics of the Russian Academy of Sciences

The results of first experiments and future trends in advancing to sub-THz and THz frequency ranges with self-oscillators working at high cyclotron harmonics and gyromultipliers are discussed. In both varieties of gyrotrons, selective excitation of high harmonics can be simplified by the use of electron beams describing helical trajectories whose centers are close to the cavity axis (the configuration of Large Orbit Gyrotron). In gyromultipliers, the additional selective properties are provided due to obtrusion of frequency and spatial field structure from the relatively low-frequency signal, which may be either inserted from the outside, or excited by the same electron beam used for nonlinear frequency conversion. In the latter case, the most attractive schemes for THz range are those where excitation of low- and high-frequency radiation takes place in a single volume.

Key words: 
  1. Gaponov AV, Petelin MI, Yulpatov VK. The induced radiation of excited classical oscillators and its use in high-frequency electronics. Radiophys. Quantum Electron. 1967;10(9–10):794–813. DOI: 10.1007/BF01031607.
  2. Gaponov-Grekhov AV, editor. Gyrotron. Collection of Articles. Gorky: IAP AS USSR; 1981 (in Russian).
  3. Nusinovich GS. Introduction to the Physics of Gyrotrons. Baltimore: Johns Hopkins University Press; 2004. 352 p.
  4. Zaitsev NI, Pankratova TP, Petelin MI, Flyagin VA. Millimeter- and submillimeterwave gyrotrons. Radio Engineering and Electronic Physics. 1974;19(5):103.
  5. Flyagin VA, Luchinin AG, Nusinovich GS. Submillimeter-wave gyrotrons – theory and experiment. Int. J. Infrared Milli. Waves. 1983;4(4):629–637. DOI: 10.1007/BF01009400.
  6. Spira-Hakkarainen S, Kreischer KE, Temkin RJ. Submillimeter-wave harmonic gyrotron experiment. IEEE Trans. Plasma Sci. 1990;18(3):334–342. DOI: 10.1109/27.55903.
  7. Idehara T, Brand GF. Submillimeter Wave Gyrotron Development and Applications. Fucui University, printed by EXIT Co., LTD; 1995. 269 p.
  8. Glyavin MY, Luchinin AG, and Golubiatnikov GY. Generation of 1.5-kW, 1- THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 2008;100(1):015101. DOI: 10.1103/PhysRevLett.100.015101.
  9. Idehara T, Saito T, Mori H et al. Long pulse operation of the THz gyrotron with a pulse magnet. Int. J. Infrared Milli. Waves. 2008;29(2):131–141. DOI: 10.1007/s10762-007-9312-y.
  10. Zapevalov VE, Zarnitsyna IG, Nusinovich GS. Excitation of parasitic modes that resonate with the first harmonic of the cyclotron frequency in a gyrotron operating on a mode that resonates with the second harmonic. Radiophys. Quantum Electron. 1979;22(3):254–258. DOI: 10.1007/BF01034911.
  11. Antakov II, Zapevalov VE, Pankratova TB, Tsimring SE. Gyrotrons on gyrofrequency harmonics. In: Gaponov-Grekhov AV, editor. Gyrotron. Collection of Articles. Gorky: IAP AS USSR; 1981. P. 192–215 (in Russian).
  12. Nusinovich GS, Pankratova TB. Theory of submillimeter gyrotrons. In: Gaponov-Grekhov AV, editor. Gyrotron. Collection of Articles. Gorky: IAP AS USSR; 1981. P. 169–174 (in Russian).
  13. Jory H. Investigation of electronic interaction with optical resonators for microwave generation and amplification. R&D Tech. Report, Varian Associates, Paolo Alto, CA, ECOM-01873-F; 1968.
  14. McDermott DB, Luhmann NC, Kupiszewski Jr A, and Jory HR. Small-signal theory of a large-orbit cyclotron resonance harmonic maser. Phys. Fluids. 1983;26(7):1936–1941. DOI: 10.1063/1.864341.
  15. Lawson W, Destler WW, and Striffler CD. High-power microwave generation from a large-orbit gyrotron in vane and hole-and-slot conducting wall geometries. IEEE Trans. Plasma Sci. 1985;13(6):444–453. DOI: 10.1109/TPS.1985.4316458.
  16. Bratman VL, Fedotov AE, Kalynov YK et al. Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band. IEEE Trans. Plasma Sci. 1999;27(2):456–461. DOI: 10.1109/27.772273.
  17. Zhurakhovsky VA. Nonlinear Oscillations of Electrons in Magnetically Directed Flows. Kiev: Nauk. Dumka; 1972. 303 p. (in Russian).
  18. Belousov VI, Ergakov VS, Moiseev MA. Two-resonator MCR at harmonics of the electron cyclotron frequency. Electronic Equipment. Ser. I. Microwave Electronics. 1978;(9):41 (in Russian).
  19. Hirshfield JL. Coherent radiation from spatiotemporally modulated gyrating electron beams. Phys. Rev. A. 1991;44(10):6845–6853. DOI: 10.1103/physreva.44.6845.
  20. Guo H, Chen SH, Granatstein VL et al. Operation of highly overmoded harmonic-multiplying gyrotron amplifier. Phys. Rev. Lett. 1997;79(3):515–518. DOI: 10.1103/PhysRevLett.79.515.
  21. Nusinovich GS, Dumbrajs O. Two-harmonic prebunching of electrons in multicavity gyrodevices. Phys. Plasmas. 1995;2(2):568–577. DOI: 10.1063/1.870982.
  22. Alexandrov AF, Vlasov AN, Galuzo SY et al. Relativistic Doppler microwave frequency multipliers. In: Relativistic High-Frequency Electronics. Vol. 3. Gorky: IAP AS USSR; 1983. P. 96 (in Russian).
  23. Antakov II, Talonov AV, Yulpatov VK. Some features of the interaction of helical electron beams, guided by a uniform magnetic field, with the electromagnetic field of waveguides. Radio Electronics Issues. Ser. 1. Electronics. 1965;(12):33 (in Russian).
  24. Gol'denberg AL, Petelin MI. The formation of helical electron beams in an adiabatic gun. Radiophys. Quantum Electron. 1973;16(1):106–111. DOI: 10.1007/BF01080801.
  25. Bratman VL, Kalynov YK, Manuilov VN, Samsonov SV. Submillimeter-wave large-orbit gyrotron. Radiophys. Quantum Electron. 2005;48(10–11):731–736. DOI: 10.1007/s11141-006-0001-9.
  26. Bratman VL, Kalynov YK, Manuilov VN, Samsonov SV. Electron-optical system for a large-orbit gyrotron. Tech. Phys. 2005;50(12):1611–1616. DOI: 10.1134/1.2148563.
  27. Rhee MJ and Destler WW. Relativistic electron dynamics in a cusped magnetic field. Phys. Fluids. 1974;17(8):1574–1581. DOI: 10.1063/1.1694936.
  28. Gallagher D, Barsanti M, Scafuri F, Armstrong C. High-power cusp gun for harmonic gyro-device applications. IEEE Trans. Plasma Sci. 2000;28(3):695–699. DOI: 10.1109/27.887705.
  29. Bratman VL, Idehara T, Kalynov YK et al. Design of a powerful and compact THz oscillator. Int. J. Infrared Milli. Waves. 2006;27(8):1063–1071. DOI: 10.1007/s10762-006-9094-7.
  30. Bandurkin IV, Savilov AV. Suppressing electron bunching at low harmonics in gyromultipliers of the klystron type. Tech. Phys. Lett. 2007;33(9):795–798. DOI: 10.1134/S1063785007090246.
  31. Bandurkin IV, Savilov AV. High-harmonic electron bunching in the field of a signal wave and the use of this effect in cyclotron masers with frequency multiplication. Phys. Rev. ST Accel. Beams. 2005;8(1):010702. DOI: 10.1103/PhysRevSTAB.8.010702.
  32. Bratman VL, Gintsburg VA, Grishin YA et al. Pulsed wideband orotrons of millimeter and submillimeter waves. Radiophys. Quantum Electron. 2006;49(11):866–871. DOI: 10.1007/s11141-006-0121-2.
  33. Antakov II, Gachev IG, Denisov GG et al. Development and experimental study of a two-cavity 285 GHz CW gyrotron-multiplier. In: Proc. 6th Int. Workshop «Strong Microwave in Plasmas». N. Novgorod; 2006. P. 162.
  34. Bandurkin IV, Bratman VL, Savilov AV. Frequency multiplication in gyrotron autooscillators. Tech. Phys. Lett. 2006;32(1):84–87. DOI: 10.1134/S1063785006010287.
  35. Bandurkin IV, Bratman VL, Denisov GG, Savilov AV. Frequency multiplication in gyro-oscillators. In: Proc. 6th Int. Workshop «Strong Microwave in Plasmas». N. Novgorod; 2006. P. 156.
Short text (in English):
(downloads: 81)