ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kozhevnikov A. V., Khivintsev Y. V., Sakharov V. K., Dudko G. M., Vysotskii S. L., Nikulin Y. V., Pavlov E. S., Filimonov Y. A., Khitun A. G. The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, iss. 3, pp. 9-32. DOI: 10.18500/0869-6632-2019-27-3-9-32

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 107)
Полный текст в формате PDF(En):
(downloads: 1)
Language: 
Russian
Article type: 
Article
UDC: 
537.622.2; 537.862

The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films

Autors: 
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Pavlov Evgenij Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khitun Aleksander Georgievich, University of California-Riverside
Abstract: 

Topic. In this work, we experimentally explore the spin waves (SW) propagation in tangentially magnetized cross-like structure in the shape of two orthogonal waveguides on the base of yttrium iron garnet (YIG) film for the conditions when the first order parametric processes take place. Aim. We studied the influence of parametric processes on spectrum of SW in the tangentially magnetized cross-like structure in the filtration band defined as the frequency interval ∆f∥,⊥ of the overlapping spectra of SWs in longitudinally and transversely magnetized waveguides. Methods. The experiments were carried out with the cross-like structure from YIG film with the thickness d ≈ 3.8 μm, having the form of two orthogonal waveguides with the width w ≈ 500 μm, length L ≈ 3 mm, and wire SW antennas placed at the ends of waveguides. One of the antennas was considered as the input and was used to excite SW in the structure, and the other three were used to analyze the spectrum of output signals with the frequencies inside the filtration band ∆f∥,⊥. Results. It was shown that the shape of SW spectrum obtained at the output antennas of orthogonal waveguides could significantly change when the SW parametric instability takes place. Discussion. We attribute this effect to the formation mechanism of secondary SW-satellites in the spectrum of the pump signal and the influence of lateral quantization effects on SW spectrum in the studied cross-like structure.

Reference: 
  1. Bernstein K., Cavin R.K., Porod W., Seabaugh A., Welser J. Device and architecture outlook for beyond CMOS switches// Proc. IEEE. 2010. Vol. 98, No 12. Pp. 2169–2184 .
  2. Nikonov D.E., Young I.A. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking// Proc. IEEE. 2013. Vol. 101, No 12. Pp. 2498–2533.
  3. Roy K., Bandyopadhyay S., Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing// Appl. Phys. Lett. 2011. Vol. 99. 063108.
  4. Chumak A.V., Vasyuchka V.K., Serga A.A., Hillebrands B. Magnon spintronics// Nature Physics. 2015. Vol. 11. p. 453–461. DOI:10.138.NPHYS3347.
  5. Nikitov S.A., Kaliabin D.V., Lisenkov I.V., Slavin A.N., Barabanenkov Yu.N., Osokin S.A., Sadovvnikov A.V., Baginin E.N., Morozova M.A., Sharaevskii Yu.P., Filimonov Y.A., Khivintsev Y.V., Vysotskii S.L., Sakharov V. K., Pavlov E.S. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp., 2015, vol. 58, no. 10, pp. 1002–1028. DOI: https://doi.org/10.3367/ UFNr.0185.201510m.1099
  6. Khitun A., Wang K. Non-volatile magnonic logic engineering// Journ. Appl. Phys. 2011. Vol. 110. 0343061.
  7. Khitun A. Magnonic holographic devices for special type data processing// Journ. Appl. Phys. 2013. Vol. 113. 164503.
  8. Nanayakkara K., Jacob A.P., Kozhanov A. Spin wave scattering and interference in ferromagnetic cross// Journ. of Appl. Phys. 2015. Vol. 118. 163904. DOI:10.1063/1.4934519
  9. Khitun A.G., Kozhanov A.E. Magnonic logic devices. Izv. Sarat. University. New Serie Phisycs, 2017. vol.17, no. 4, pp. 216–241.
  10. Nanayakkara K., Anferov A., Jacob A. P., Allen S. J., Kozhanov A. Cross junction spin wave logic architecture // IEEE Trans. on Magn. 2014. Vol. 50, No 11. 3402204.
  11. Balynsky M., Kozhevnikov A., Khivintsev Y., Bhowmick T., Gutierrez D., Chiang H., Dudko G., Filimonov Y., Liu G., Jiang C., Balandin A. A., Lake R., Khitun A. Magnonic interferometric switch for multi-valued logic circuits// Journ. of Appl. Phys. 2017. Vol. 121. 024504.
  12. Kozhevnikov A., Gertz F., Dudko G., Filimonov Y., Khitun A. Pattern recognition with magnonic holographic memory device // Appl. Phys. Lett. 2015. Vol. 106, No 14. 142409.
  13. Au Y., Davison T., Ahmad E., Keatley P.S., Hicken R.J., Kruglyak V.V. Excitation of propagating spin waves with global uniform microwave fields // Appl. Phys. Lett. 2011. Vol. 98. 122506.
  14. Bracher T., Pirro P., Westermann J., Sebastian T., Lagel B., Van de Wiele B., Vansteenkiste A., and Hillebrands B. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures // Appl. Phys. Lett. 2013. Vol. 102. 132411.
  15. Davies C.S., Francis A., Sadovnikov A.V., Chertopalov S.V., Bryan M.T., Grishin S.V., Allwood D.A., Sharaevskii Yu.P., Nikitov S.A., Kruglyak V.V. Towards graded-index magnonics: Steering spin waves in magnonic networks // Physical Review B. 2015. Vol. 92, No 2. 020408.
  16. Sadovnikov A.V., Davies C.S., Grishin S.V., Kruglyak V.V., Romanenko D.V., Sharaevskii Yu.P., Nikitov S.A. Magnonic beam splitter: The building block of parallel magnonic circuitry // Appl. Phys. Lett. 2015. Vol. 106, No 19. 192406.
  17. Demidov V., Demokritov S.O., Birt D., O’Gorman B., Tsoi M., Li X. Radiation of spin waves from the open end of a microscopic magnetic-film waveguide // Phys. Rev. B. 2009. Vol. 80. 014429.
  18. Dudko G.M., Kozhevnikov A.V., Khivintsev Yu.V., Filimonov Yu.A., Khitun A.G., Nikitov S.A. Micromagnetic simulation of propagation of spin waves in in-plane magnetized crosses based on ferrite microwaveguides of different width. Journ. of Communications Technology and Electronics, 2018, vol. 63, Iss. 10, pp. 1212–1216. https://doi.org/10.1134/S1064226918100091. 
  19. Gertz F., Kozhevnikov A.V., Filimonov Y.A., Nikonov D., Khitun A. Magnonic holographic memory: From proposal to device // IEEE Journ. on Exploratory Solid-State Computational Devices and Circuits. 2015. Vol.1. Pp. 67–75.
  20. Balynskiy M., Chiang H., Gutierrez D., Kozhevnikov A., Filimonov Y., Khitun A. Reversible magnetic logic gates based on spin wave interference // Journ. of Appl. Phys. 2018. Vol. 123. 144501. DOI: 10.1063/1.5011772.
  21. Khivintsev Y., Ranjbar M., Gutierrez D., Chiang H., Kozhevnikov A., Filimonov Y., Khitun A. Prime factorization using magnonic holographic devices // Jour. Appl. Phys. 2016. Vol. 120. 123901. DOI: 10.1063/1.4962740.
  22. Balynsky M., Gutierrez D., Chiang H., Kozhevnikov A., Dudko G., Filimonov Y., Balandin A.A., Khitun A. A magnetometer based on a spin wave interferometer // Scientific Reports. 2017. Vol. 7. 11539.
  23. Gutierrez D., Chiang H., Bhowmick T., Volodchenkov A.D., Ranjbar M., Liu G., Jiang C., Warren C., Khivintsev Y., Filimonov Y., Garay J., Lake R., Balandin A.A., Khitun A. Magnonic holographic imaging of magnetic microstructures// Journal of Magnetism and Magnetic Materials. 2017. Vol. 428. Pp. 348–356. DOI:10.1016/j.jmmm.2016.12.022.
  24. Gurevich А.G., Melkov G.А. Magnetization Oscillations and Waves. CRC Press. Boca Raton, 1996, 464 p.
  25. Vashkovskiy A.V., Stal’makhov V.S., Sharayevskiy YU.P. Magnitostaticheskiye Volny v Elektronike Sverkhvysokikh Chastot. Izdatel’stvo Saratovskogo Universiteta, 1993. 311 p. (in Russian).
  26. L’vov V.S. Nelineynyye Spinovyye Volny. M.:Nauka, 1987. 270 p. (in Russian).
  27. Mednikov A.M. Nelineynyye effekty pri rasprostranenii poverkhnostnykh spinovykh voln v plenkakh ZHIG.FTT, 1981, vol. 23, Iss. 1, pp. 242–245 (in Russian).
  28. Temiryazev A.G. Mekhanizm preobrazovanija poverhnostnoj magnitostaticheskoj volny v uslovijah trehmagnonnogo raspada. FTT, 1987, vol. 29, Iss. 2, pp. 313–319 (in Russian). 
  29. Melkov G.A., Sholom S.V. Parametric excitation of spin waves by a surface magnetostatic wave. Sov. Phys. JETP (AIP), 1989, 69, no. 2, p. 403.
  30. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State (Springer), 1997, vol. 39, Iss. 2, pp. 288–295.
  31. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. Journ. of Exper. and Theor. Phys.(AIP), 1999, vol. 88, no. 1, pp. 174–181. DOI:10.1134/1.558780.
  32. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples // J. Appl. Phys. 1978. Vol. 49. Pp. 4886–4895.
  33. Sadovnikov A.V., Odintsov S.A, Beginin E.N., Grachev A.A., Gubanov V.A., Sheshukova S.E., Sharaevskii Yu. P., Nikitov S.A. Nonlinear spin wave effects in the system of lateral magnonic structures. JETP Letters, 2018, vol. 107, Iss. 1, pp. 25–29. DOI:10.1134/S0021364018010113.
  34. Sadovnikov A.V., Odintsov S.A., Beginin E.N., Sheshukova S.E., Sharaevskii Yu.P., Nikitov S.A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes// Phys. Rev. B. 2017. Vol. 96. 144428.
  35. Sadovnikov A.V., Davies C.S., Kruglyak V.V., Romanenko D.V., Grishin S.V., Beginin E.N., Sharaevskii Y.P., Nikitov S.A. Spin wave propagation in a uniformly biased curved magnonic waveguide // Phys. Rev. B. 2017. Vol. 96. 060401(R).
  36. Polzikova N.I., Raevskii A.O., Temiryazev A.G. Vlilanie obmennogo vzaimodejstvija na granitsu trehmagnonnogo raspada volny Damona-Eshbacha v tonkih plenkah YIG. FTT, 1984, vol. 26, iss. 11, pp. 3506–3508 (in Russian).
  37. magpar – Parallel Finite Element Micromagnetics Package Version 0.9 Build 3061M (2002) www.magpar.net/static/magpar/doc/html/index.html
  38. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. Springer Science+Business Media, LLC 2009. No 2008936559. DOI:10.1007/978-0-387-77865-5
  39. Grechushkin K.V., Stalmakhov A.V., Tyulyukin V.A. Prostranstvennaja structura puchkov volnsatellitov nelinejnoi poverhnostnoj magnitostaticheskoj volny. Radiotechnika i Electronica, 1991, vol. 36, pp. 2078–2084 (in Russian). 
  40. Dudko G.M., Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V., Vysotskii S.L., Seleznev M.E., Filimonov Y.A., Khitun A.G. Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films. Izvestiya VUZ, Applied Nonlinear Dynamics, 2019, vol. 27, no. 2, pp. 39–60 (in Russian). DOI:https://doi.org/10.18500/0869-6632-2019-27-2-39-60.
Received: 
14.12.2018
Accepted: 
22.03.2019
Published: 
20.06.2019
Short text (in English):
(downloads: 96)