ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Felk E. V. The effect of weak nonlinear dissipation on the stochastic web. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 72-79. DOI: https://doi.org/10.18500/0869-6632-2013-21-3-72-79

Language: 
Russian
Heading: 

The effect of weak nonlinear dissipation on the stochastic web

Autors: 
Felk Ekaterina Viktorovna, Saratov State University
Abstract: 

The e?ect of a weak nonlinear dissipation on the structure of the system’s phase space with stochastic web is invstigated. The bifurcation scenario of attractor transformations with the increase of dissipation is revealed.

Key words: 
DOI: 
10.18500/0869-6632-2013-21-3-72-79
References: 

1. Заславский Г.М., Сагдеев Р.З., Усиков Д.А., Черников А.А. Слабый хаос и квазирегулярные структуры. М.: Физматлит, 1983. 235 с. 2. Заславский Г.М. Физика хаоса в гамильтоновых системах. Москва-Ижевск: Институт компьютерных исследований, 2004. 288 с. 3. Табор М. Хаос и неинтегрируемость в нелинейной динамике. М.: Эдиториал УРСС, 2001. 320 с. 4. Feudel U., Grebogi C., Hunt B.R., Yorke J.A. Map with more than 100 coexisting low-period periodic attractors //Physical Review E. 1996. Vol. 54, No 1. P. 71. 5. Колесов А.Ю., Розов Н.Х. О природе явления буферности в слабо диссипативных системах //Теоретическая и математическая физика. 2006. Т. 146, No 3. С. 447. 6. Martins L.С., Gallas J.A.C. Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors. //Int. J. Bif. & Chaos. 2008. Vol. 18, No 6. P. 1705. 7. Feudel U. Complex dynamics in multistable systems //Int. J. Bif. & Chaos. 2008. 18, No 6. P. 1607. 8. Blazejczyk-Okolewska B., Kapitaniak T. Coexisting attractors of impact oscillator //Chaos, Solitons & Fractals. 1998. Vol. 9. P. 1439. 9. Feudel U., Grebogi C. Multistability and the control of complexity //Chaos. 1997. Vol. 7, No 4. P. 597. 10. Feudel U., Grebogi C. Why are chaotic attractors rare in multistable systems? //Phy. Rev. Lett. 2003. Vol. 91, No 13. 134102. 11. Rech P., Beims M., Gallas J. Basin size evolution between dissipative and conservative limits //Phys. Rev. E. 2005. Vol. 71, No 1. 017202. 12. Савин А.В., Савин Д.В. Структура бассейнов притяжения сосуществующих аттракторов слабо-диссипативного «отображения – паутины» // Нелинейный мир. 2010. Т. 8, No 2. С. 70. 13. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2005. 292 с.  

Short text (in English):