ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Felk E. V. The effect of weak nonlinear dissipation on the stochastic web. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 72-79. DOI: 10.18500/0869-6632-2013-21-3-72-79

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 125)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

The effect of weak nonlinear dissipation on the stochastic web

Autors: 
Felk Ekaterina Viktorovna, Saratov State University
Abstract: 

The effect of a weak nonlinear dissipation on the structure of the system’s phase space with stochastic web is invstigated. The bifurcation scenario of attractor transformations with the increase of dissipation is revealed.

Reference: 
  1. Zaslavsky GM, Sagdeev RZ, Usikov DA, Chernikov AA. Weak chaos and quasi-regular structures. Moscow: Fizmatlit; 1983. 235 p. (In Russian).
  2. Zaslavsky GM. The physics of chaos in Hamiltonian systems. Moscow-Izhevsk: ICS; 2004. 288 p. (In Russian).
  3. Tabor M. Chaos and non-integrability in nonlinear dynamics. Moscow: Editorial URSS; 2001. 320 p. (In Russian).
  4. Feudel U, Grebogi C, Hunt BR, Yorke JA. Map with more than 100 coexisting low-period periodic attractors. Physical Review E. 1996;54(1):71–81. DOI: 10.1103/physreve.54.71.
  5. Kolesov AYu, Rozov Nkh. The nature of the bufferness phenomenon in weakly dissipative systems. Theoret. and Math. Phys. 2006;146(3):376–392. DOI: 10.4213/tmf2047.
  6. Martins LС, Gallas JAC. Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors. Int. J. Bif. & Chaos. 2008;18(6):1705–1717. DOI:10.1142/S0218127408021294.
  7. Feudel U. Complex dynamics in multistable systems. Int. J. Bif. & Chaos. 2008;18(6):1607–1626. DOI:10.1142/S0218127408021233.
  8. Blazejczyk-Okolewska B, Kapitaniak T. Coexisting attractors of impact oscillator. Chaos, Solitons & Fractals. 1998;9(8):1439–1443.
  9. Feudel U, Grebogi C. Multistability and the control of complexity. Chaos. 1997;7(4):597–604. DOI: 10.1063/1.166259.
  10. Feudel U, Grebogi C. Why are chaotic attractors rare in multistable systems? Phy. Rev. Lett. 2003;91(13):134102. DOI: 10.1103/PhysRevLett.91.134102.
  11. Rech P, Beims M, Gallas J. Basin size evolution between dissipative and conservative limits. Phys. Rev. E. 2005;71(1):017202. DOI:10.1103/PhysRevE.71.017202.
  12. Savin AV, Savin DV. THE BASINS OF ATTRACTORS IN THE WEB MAP WITH WEAK DISSIPATION. Nonlinear world. 2010;8(2):70–71.
  13. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. Moscow: Fizmatlit; 2005. 292 p. (In Russian).
Received: 
28.02.2013
Accepted: 
12.04.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 89)