ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Felk E. V. The effect of weak nonlinear dissipation on the stochastic web. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 72-79. DOI: 10.18500/0869-6632-2013-21-3-72-79

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 116)
Article type: 

The effect of weak nonlinear dissipation on the stochastic web

Felk Ekaterina Viktorovna, Saratov State University

The effect of a weak nonlinear dissipation on the structure of the system’s phase space with stochastic web is invstigated. The bifurcation scenario of attractor transformations with the increase of dissipation is revealed.

  1. Zaslavsky GM, Sagdeev RZ, Usikov DA, Chernikov AA. Weak chaos and quasi-regular structures. Moscow: Fizmatlit; 1983. 235 p. (In Russian).
  2. Zaslavsky GM. The physics of chaos in Hamiltonian systems. Moscow-Izhevsk: ICS; 2004. 288 p. (In Russian).
  3. Tabor M. Chaos and non-integrability in nonlinear dynamics. Moscow: Editorial URSS; 2001. 320 p. (In Russian).
  4. Feudel U, Grebogi C, Hunt BR, Yorke JA. Map with more than 100 coexisting low-period periodic attractors. Physical Review E. 1996;54(1):71–81. DOI: 10.1103/physreve.54.71.
  5. Kolesov AYu, Rozov Nkh. The nature of the bufferness phenomenon in weakly dissipative systems. Theoret. and Math. Phys. 2006;146(3):376–392. DOI: 10.4213/tmf2047.
  6. Martins LС, Gallas JAC. Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors. Int. J. Bif. & Chaos. 2008;18(6):1705–1717. DOI:10.1142/S0218127408021294.
  7. Feudel U. Complex dynamics in multistable systems. Int. J. Bif. & Chaos. 2008;18(6):1607–1626. DOI:10.1142/S0218127408021233.
  8. Blazejczyk-Okolewska B, Kapitaniak T. Coexisting attractors of impact oscillator. Chaos, Solitons & Fractals. 1998;9(8):1439–1443.
  9. Feudel U, Grebogi C. Multistability and the control of complexity. Chaos. 1997;7(4):597–604. DOI: 10.1063/1.166259.
  10. Feudel U, Grebogi C. Why are chaotic attractors rare in multistable systems? Phy. Rev. Lett. 2003;91(13):134102. DOI: 10.1103/PhysRevLett.91.134102.
  11. Rech P, Beims M, Gallas J. Basin size evolution between dissipative and conservative limits. Phys. Rev. E. 2005;71(1):017202. DOI:10.1103/PhysRevE.71.017202.
  12. Savin AV, Savin DV. THE BASINS OF ATTRACTORS IN THE WEB MAP WITH WEAK DISSIPATION. Nonlinear world. 2010;8(2):70–71.
  13. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. Moscow: Fizmatlit; 2005. 292 p. (In Russian).
Short text (in English):
(downloads: 66)