ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Runnova A. E., Artemiev A. E., Ovchinnikov A. A., Koronovskii A. A., Hramov A. E. The method of automatic diagnostics of various components of complex signals on the base of wavelet transform as applied to geophysics problems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 127-142. DOI: 10.18500/0869-6632-2011-19-3-127-142

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 156)
Language: 
Russian
Article type: 
Article
UDC: 
57.087

The method of automatic diagnostics of various components of complex signals on the base of wavelet transform as applied to geophysics problems

Autors: 
Runnova Anastasia Evgenevna, Saratov State University
Artemiev Aleksandr Evgenevich, Saratov State University
Ovchinnikov Aleksej Aleksandrovich, Saratov State University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

The article discusses the method of analysis and automatic diagnostics of the characteristics of various components of complex signals on digital data on the basis of continuous wavelet transformation. The results of processing of experimental data are exposed. The article shows that the offered method of single-channel continuous wavelet transformation with the subsequent analysis of instantaneous transformation energy in a certain frequency band allows tracing a zone of the registered high-intensity waves of sound and superficial type in an automatic mode.

Reference: 
  1. Gurvich II, Boganik GN. Seismic Exploration. Moscow: Nedra; 1980. 551 p. (in Russian).
  2. Bondarev VI, Krylatkov SM. Basics of Processing and Interpretation of Seismic Data. Ekaterinburg: USMU Publishing; 2001. 193 p. (in Russian).
  3. Koronovskii AA, Khramov AE. Continuous Wavelet Analysis and Its Applications. Moscow: Fizmatlit; 2003. 176 p. (in Russian).
  4. Blatter C. Wavelets: A Primer. CRC Press; 2002. 212 p.
  5. Anfinogentov VG, Koronovskii AA, Khramov AE. Wavelet analysis and its use to analyze the dynamics of nonlinear dynamic systems of various nature. Bulletin of the Russian Academy of Sciences: Physics. 2000;64(12):2383 (in Russian).
  6. Torrence C, Compo GP. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. 1998;79(1):61–78. DOI: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  7. Peng CK, Havlin S, Stanley HE, Goldberger A. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–87. DOI: 10.1063/1.166141.
  8. Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos. 2010;4(2):245–302. DOI: 10.1142/S0218127494000204.
  9. Daubechies I. Ten Lectures on Wavelets. Philadelphija: SIAM; 1992. 350 p. DOI: 10.1137/1.9781611970104.
  10. Meyer Y. Wavelets: Algorithms and Applications. Philadelphia: SIAM; 1993. 133 p.
  11. Mallat SG. A Wavelet Tour of Signal Processing. New York: Academic Press; 1998. 805 p. DOI: 10.1016/B978-0-12-374370-1.X0001-8.
  12. Addison PS. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science Engineering, Medicine and Finance. Bristol: Institute of Physics Publishing; 2002. 472 p.
  13. Flandrin P. Some aspects of non-stationary signal processing with emphasis on timefrequency and time-scale methods. In: Combes JM, Grossmann A, Tchamitchian P, editors. Wavelets. Springer, Berlin; 1989. P. 68–98. DOI: 10.1007/978-3-642-97177-8_4.
  14. Grossman A, Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984;15(4):723–736. DOI: 10.1137/0515056.
  15. Holschneider M. Wavelets: An Analysis Tool. Oxford: Oxford University Press; 1995. 448 p.
  16. Filatova AE, Artemev AE, Koronovskii AA, Pavlov AN, Hramov AE. Progress and prospect of wavelet transform application to the analysis of nonstationary nonlinear dates in contemporary geophysics. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(3):3–23 (in Russian). DOI: 10.18500/0869-6632-2010-18-3-3-23.
  17. Filatova AE, Ovchinnikov AA, Koronovskii AA, Khramov AE. Application of wavelet transform for diagnostics of noise-waves of sound and surface types according to digital data of ground seismic prospecting. Vestnik TSU. 2010;15(2):524–565 (in Russian).
  18.  Piskun PV. Software and Algorithmic Support of Continuous Wavelet Transform During Processing and Interpretation of Geophysical Fields. Moscow: MSU Publishing; 2006. 102 p. (in Russian).
  19. Piskun PV, Petrov AV, Zinovkin SV. Computer technology Koskad SEIS for complex analysis of seismic and well information. In: Abstracts of the VII International Scientific and Practical Conference Geomodel - 2005. P. 42 (in Russian).
  20. Sitnikova EY, Hramov AE, Koronovskii AA, Luijtelaar EL. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. Journal of Neuroscience Methods. 2009;180(2):304–316. DOI: 10.1016/j.jneumeth.2009.04.006.
  21. Kumar P, Foufoula-Georgiou E. Wavelet analyses for geophysical applications. Reviews of Geophysics. 1997;35(4):385–412. DOI: 10.1029/97RG00427.
  22. Corso G, Kuhn PS, Lucena LS, Thom ZD. Seismic ground roll time-frequency filtering using the Gaussian wavelet transform. Physica A. 2003;318(3–4):551–561. DOI: 10.1016/S0378-4371(02)01379-1.
  23. Yuen DA, Vincent AP, Kido M, Vecsey L. Geophysical applications of multidimensional filtering with wavelets. Pure and Applied Geophysics. 2001;159(10):2285–2309. DOI: 10.1007/s00024-002-8736-5.
  24. Kritski A, Vincent P, Yuen DA, Carlsen T. Adaptive wavelets for analyzing dispersive seismic waves. Geophysics. 2007;72(1):12JF–Z15. DOI: 10.1190/1.2374799.
  25. Ovchinnikov AA, Hramov AE, Luttjehann A et al. Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals. Tech. Phys. 2011;56(1):1–7. DOI: 10.1134/S1063784211010191.
  26. Liner C, Li C, Gersztenkorn A, Smythe J. SPICE: A new general seismic attribute. SEG Expending Abstracts 2004. P. 433–436.
  27. Naveau P and Oh H. Polynomial wavelet regression for images with irregular boundaries. IEEE Transactions On Image Processing. 2004;13(6):773–781. DOI: 10.1109/TIP.2003.821345.
  28. Domingues MO, Mendes Jr O, Mendes da Costa F. On wavelet techniques in atmospheric sciences. Advances in Space Research. 2005;35(5):831–842. DOI: 10.1016/j.asr.2005.02.097.
  29. Aki R, Richards P. Quantitative Seismology. Vol. 1. W.H.Freeman & Co; 1980. 700 p.
  30. Rutherford SR, Williams RH. Amplitude -versus-offset variations in gas sands. Geophysics. 1989;54(6):680–688. DOI: 10.1190/1.1442696.
  31. Castagna JP, Backus MM. Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis. Society of Exploration Geophysicists. 1993. 357 p.
  32. Ross CP. Effective AVO crossplot modeling: A tutorial. Geophysics. 2000;65(3):700–1002. DOI: 10.1190/1.1444769.
  33. Dong W. AVO detectability against tuning and stretching artifacts. Geophysics. 1999;64(2):323–649. DOI: 10.1190/1.1444555.
  34. Foster DJ, Keys RG, Reilly JM. Another perspective on AVO crossplotting. The Leading Edge. 1997;16(9):1209–1360. DOI: 10.1190/1.1437768.
  35. Gray D, Goodway B, Chen T. Bridging the Gap: Using AVO to Detect Changes in Fundamental Elastic Constants. SEG, Expended Abstracts; 1999. DOI: 10.3997/2214-4609.201407877.
  36. Inozemtsev AN, Korostyshevsky MB, Voskresensky YN, Baransky NL, Badeikin AN. Influence of spectral characteristics of seismic signals on the image and class of AVO-anomalies in thin-layered media. Geophysics. Special Issue. Seismic Technology-II-2003. P. 167–172 (in Russian).
  37. Valiev SG, Li IA. Results of AVO analysis of seismic records at oil and gas fields on the Sakhalin shelf. Geophysics. 2003;(2):21–26 (in Russian).
  38. Technical Instructions for Seismic Exploration for Oil and Gas. Moscow; 2003 (in Russian).
  39. Koronovskii AA, Khramov AE. An effective wavelet analysis of the transition to chaos via intermittency. Tech. Phys. Lett. 2001;27(1):1–5. DOI: 10.1134/1.1345150.
  40. Hramov AE, Koronovskii AA, Midzyanovskaya IS, Sitnikova E, Rijn CM. On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. Chaos. 2006;16(4):043111. DOI: 10.1063/1.2360505.
  41. Koronovskii AA, Minjuhin IM, Tyshenko AA, Hramov AE, Midzjanovskaja IS, Sitnikova EY. Application of continuous wavelet transform to analysis of intermittent behavior. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):34–54 (in Russian). DOI: 10.18500/0869-6632-2007-15-4-34-54.
  42. Schuster G. Deterministic Chaos. Wiley; 1995. 320 p. 

 

Received: 
02.12.2010
Accepted: 
03.02.2011
Published: 
29.07.2011
Short text (in English):
(downloads: 111)