ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zhdanova O. L., Bazhina D. A. The modes of genetic structure and population size dynamics in evolution model of two­-aged population. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 1, pp. 40-54. DOI: 10.18500/0869-6632-2011-19-1-40-54

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 181)
Language: 
Russian
Article type: 
Article
UDC: 
574.34: 51-76

The modes of genetic structure and population size dynamics in evolution model of two­-aged population

Autors: 
Zhdanova Oksana Leonidovna, Institute of Automation and Control Processes, FEB RAS (IASP FEB RAS)
Bazhina Dina Andreevna, Institute of Automation and Control Processes, FEB RAS (IASP FEB RAS)
Abstract: 

The modes of genetic structure and size dynamics of structured population are investigated in this work. The reproductive potential and survival rate of reproductive part of population in following years of life are determined on genetic level. It has been shown that evolutional increasing of average population fitness is followed by arising of complicated dynamics of population size and of genetic structure. Further growth of fitness is capable to stabilize the genetic structure of population and so only the population size will be fluctuating with regular or chaotic circling. The type of the final genetic equilibrium depends upon initial conditions in a very complicated way. Therefore the initial conditions play essential role for the direction of natural population evolution.

Reference: 
  1. Shapiro AP. To the question of loops in return sequences. Control and Information. 1972;(3):96–118 (in Russian).
  2. Shapiro AP, Luppov SP. Recurrent Equations in the Theory of Population Biology. Moscow: Nauka; 1983. 132 p. (in Russian).
  3. May RM. Biological population obeying difference equations: Stable points, stable cycles, and chaos. J. Theor. Biol. 1975;51(2):511–524. DOI: 10.1016/0022-5193(75)90078-8.
  4. Richer WE. Stock and recruit. Theor. J. Fish. Res. Bard. Can. 1954;2(5):559.
  5. Hassell MP, Lawton JN, May RM. Patterns of dynamical behavior in single species populations. J. Anim. Ecol. 1976;45(2):471–486. DOI: 10.2307/3886.
  6. Ruxton GD, Gurney WSC, de Roos AM. Interference and generation cycles. Theor. Popul. Biol. 1992;42(3):235–253. DOI: 10.1016/0040-5809(92)90014-K.
  7. Getz WM. Correlative coherence analysis: variation from intrinsic and extrinsic sources in competing populations. Theor. Popul. Biol. 2003;64(1):89–99. DOI: 10.1016/s0040-5809(03)00026-1.
  8. Lebreton JD. Dynamical and statistical models of vertebrate population dynamics. C.R. Acad. Sci. Biol. 2006;329(10):804–812. DOI: 10.1016/j.crvi.2006.06.007.
  9. Reluga TC. Analysis of periodic growth-disturbance models. Theor. Popul. Biol. 2004;66(2):151–161. DOI: 10.1016/j.tpb.2004.05.003.
  10. Frisman EY. Strange attractors in the simplest models of population dynamics with an age structure. Proc. Acad. Sci. 1994;338(2):282–286 (in Russian).
  11. Frisman EY, Skaletskaya EI. Strange attractors in the simplest models of the dynamics of the number of biological populations. Review of Applied and Industrial Mathematics. 1994;1(6):988–1008 (in Russian).
  12. Frisman EY, Zhdanova OL. Evolutionary transition to complex population dynamic patterns in a two-age population. Russ. J. Genet. 2009;45(9):1124–1133. DOI: 10.1134/S1022795409090142.
  13. Badieva E. Coordinated change in the characteristics of the organism. Popular Synopsis. 2010. Available from: http://elementy.ru/genbio/synopsis?artid=290.
  14. Passekobv VP. Population variability and biometric models of organism trait coordination. Biology Bulletin Reviews. 2010;71(1):7–18 (in Russian).
  15. Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Springer, Dordrecht; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
  16. Farmer JD, Ott E, Yorke JA. The dimension of chaotic attractors. Physica D. 1983;7(1–3):153–180. DOI: 10.1016/0167-2789(83)90125-2.
  17. Zhdanova OL, Frisman EY. Dynamic regimes in a model of single-locus density-dependent selection. Russ. J. Genet. 2005;41(11):1302–1310. DOI: 10.1007/s11177-005-0233-3.
  18. Frisman EJ, Zhdanova OL. The dynamic behavior of genetic structure and population size in the evolution models of limited population. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(1):98–112 (in Russian). DOI: 10.18500/0869-6632-2006-14-1-98-112.
Received: 
12.07.2010
Accepted: 
18.01.2011
Published: 
29.04.2011
Short text (in English):
(downloads: 116)