For citation:
Abarbanel G. . Tools for analyzing observed chaotic data. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 5, pp. 119-129. DOI: 10.18500/0869-6632-1995-3-5-119-129
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(En):
(downloads: 35)
Language:
Russian
Article type:
Article
Tools for analyzing observed chaotic data
Autors:
Abarbanel Genri , Lobachevsky State University of Nizhny Novgorod
Abstract:
-
Key words:
Acknowledgments:
I thank the members of INLS for numerous discussions on this subject; the comments and assistance of E.Boerner, J.Goldberg, M.B.Kennel, C.Liu, M.M.Sushchik, J.J. («Sid») Sidorowich, and L.Sh. Tsimring were essential. I am indebted to T.Carrol, J.Cembrola, T.Galib, Z.Gills, U.Lall, L.Pecora, and R.Roy for providing me with the various data sets discussed in this review. This work was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Engineering and Geosciences, under contract DE-FG03-90ER14138, and in part by the Army Research Office (Contract DAAL03-91-C-052), and by the Office of Naval Research (Contract №00014-91-С-012), under sub-contract to the Lockheed/Sanders Corporation.
Reference:
- [2] Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LSh. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993;65:1331-1392. DOI: 10.1103/RevModPhys.65.1331.
- [24] Parlitz U. Identification of true and spurious Lyapunov exponents from time series. Int. J. Bif. Chaos 1992;2:155-165. DOI: 10.1142/S0218127492000148.
- [38] Brown R, Bryant P, Abarbanel HDI. Computing the Lyapunov spectrum of a dynamical system from observed time series. Phys. Rev. A. 1991;43(6):2787-2806. DOI: 10.1103/PhysRevA.43.2787.
- [39] Briggs K. An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A. 1990;151(1-2):27-32. DOI: 10.1016/0375-9601(90)90841-B.
- [43] Rissanen J. Stochastic Complexity in Statistical Inquiry. Singapore: World Scientific; 1989. 188 p. DOI: 10.1142/0822.
- [44] Powell MJD. Approximation Theory and Methods. Cambridge: Cambridge University Press; 1981. 339 p. Powell MJD. Radial basis functions for multivariate interpolation: a review. Preprint University of Cambridge 1985. Powell MJD. Radial basis function approximation to polynomials. Preprint University of Cambridge 1987.
- [45] Farmer JD, Sidorowich JJ. Exploiting chaos to predict the future and reduce noise. In: Lee Y-C, editor. Evolution, Learning and Codnition. Singapore: World Scientific; 1988. P. 277-330.
- [46] Giona M, Lentini F, Cimagaili V. Functional Reconstruction and Local Prediction of Chaotic Time Series. Phys. Rev. A. 1991;44(6):3496-3502. DOI: 10.1103/PhysRevA.44.3496.
- [47] Brown R. Calculating Lyapunov exponents for short and/or noisy data sets. Phys. Rev. E. 1993;47(6):3962-3969. DOI: 10.1103/PhysRevE.47.3962.
- [48] Casdagli M. Nonlinear Prediction of Chaotic Time Series. Physica D. 1989;35(3):335-356. DOI: 10.1016/0167-2789(89)90074-2.
- [49] Silverman BW. Density Estimation of Statistics and Data Analysis. London: Chapman and Hall; 1986. 176 p.
- [50] Abarbanel HDI, Brown R, Kadtke JB. Prediction in Chaotic Nonlinear Systems: Methods for Time Series with Broadband Fourier Spectra. Phys. Rev. A. 1990;41:1782-1807. DOI: 10.1103/physreva.41.1782.
- [51] Mindlin GB, Solari HG, Natiello MA, Gilmore R, Hou X-J. Торological Analysis of Chaotic Time Series Data from the Belousov-Zhabotinskii Reaction. J. Nonlin. Sci. 1991;1:147-173.
- [52] Birman JS, Williams RF. Knotted Periodic Orbits in Dynamical Systems I: Lorenz's Equations. Topology 1983;22:47-82. DOI: 10.1016/0040-9383(83)90045-9.
- [53] Birman JS, Williams RF. Knotted Periodic Orbits in Dynamical Systems II: Knot Holders for Fibered Knots. Cont. Math. 1983;20:1-60.
- [54] Papoff F, Fioretti A, Arimondo E, Mindlin GB, Solari H, Gilmore R. Structure of Chaos in the Laser with Saturatable Absorber. Phys. Rev. Lett. 1992;68:1128-1131. DOI: 10.1103/PhysRevLett.68.1128.
- [55] Cvitanovic P. Invariant Measurement of Strange Sets in Terms of Cycles. Phys. Rev. Lett. 1988;61:2729-2732. DOI: 10.1103/PhysRevLett.61.2729.
- [56] Mindlin GB, Hou X-J, Solari HG, Gilmore R, Tufillaro NB. Classification of Strange Attractors by Integers. Phys. Rev. Lett. 1990;64(20):2350-2353. DOI: 10.1103/PhysRevLett.64.2350.
- [57] Flepp L, Holner R, Brun E, Finardi M, Badii R. Model Identification by Periodic-Orbit Analysis for NMR-Laser Chaos. Phys. Rev. Lett. 1991;67(17):2244-2247. DOI: 10.1103/PhysRevLett.67.2244.
- [58] Tufillaro NB, Holzner R, Flepp L, Brun E, Finardi M, Rail R. Тemplate Analysis for a Chaotic NMR Lasers. Phys. Rev. A. 1991;44:R4786-R4788. DOI: 10.1103/physreva.44.r4786.
- [59] Ott E, Grebogi C, Yorke JA. Controlling Chaos. Phys. Rev. Lett. 1990;64(11):1196- 1199. DOI: 10.1103/PhysRevLett.64.1196. Shinbrot T, Grebogi C, Yorke JA, Ott E. Using small perturbations to control chaos. Nature 1993;363:411-417. DOI: 10.1038/363411a0.
- [60] Ikeda K. Multiple-Valued Stationary State and Its Instability of the Transmitted Light by a Ring Cavity System. Opt. Commun. 1979;30(2):257-261. DOI: 10.1016/0030-4018(79)90090-7.
- [61] Hammel SM, Jones CKRT, Moloney JV. Global dynamical behavior of the optical field in a ring cavity. J. Opt. Soc. Am. В 1985;2(4):552-564. DOI: 10.1364/JOSAB.2.000552
Received:
18.12.1994
Accepted:
11.10.1995
Published:
21.10.1996
Journal issue:
- 262 reads