ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dmitriev A. S., Kuzmin L. V., Jurkin V. J. Ultrawideband wireless sensor networks based on chaotic radiopulses. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 64-78. DOI: 10.18500/0869-6632-2009-17-4-64-78

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 266)
Language: 
Russian
Article type: 
Review
UDC: 
621.391, 621.396

Ultrawideband wireless sensor networks based on chaotic radiopulses

Autors: 
Dmitriev Aleksandr Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Kuzmin Lev Viktorovich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Jurkin Vitalij Jurevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Abstract: 

Wireless sensor networks that is a fast emerging branch of modern telecommunications are considered in this paper. Particular attention is paid on ultrawideband sensor networks where chaotic radiopulses are used as an information carrier between sensor nodes. Development of such wireless sensor networks became possible after long­term investigations of chaotic oscillations and chaos control.

Reference: 
  1. Arvind DK. Wireless sensor networks – a mission to the USA. Report of DTI global watch mission. November 2005. 40 p.
  2. Doherty L, Warneke BA, Bozer BE, Pister KSJ. Energy and performance consideration for smart dust. Int. Journal of Parallel and Distributed Systems and Networks. 2001;4(3):121–133.
  3. Crossbow Technology Inc. MTS/MDA Sensor Board Users Manual. San Jose: 2007. 38 p. http://www.xbow.com/support/Support_pdf_files/MTS-MDA_Series_Users_Manua...
  4. New public safety applications and broadband Internet access among uses envisioned by FCC authorization of ultra-wideband technology. Washington: FCC Release News. 2002.
  5. Win MZ, Scholtz RA. Impulse radio: How it works. IEEE Commun. Lett. 1998;2(2):36–38.
  6. McCorkley J. A Tutorial on ultra wideband technology. IEEE 802.15 Working Group, submission. New-York: IEEE; 2000. http://grouper.ieee.org/groups/802/15 /pub/2000/Mar00/00082rP802-15_WG-UWB-Tutorial-1-XrteamSpectrum.pdf
  7. Kelly J. Time Domain’s Proposal for UWB Multi-band Alternate PHY Layer for 802.15.3a. New-York: IEEE; 2003. http://grouper.ieee.org/groups/802/15/pub/2003/Mar03/03143r2P802-15TG3a-...
  8. Dmitriev AS, Kyarginsky BYe, Panas AI, Starkov SO. Plain Scheme of Chaotic-Carrier Data Communications at Microwave Frequencies. Journal of Communications Technology and Electronics. 2001;46(2):207–214.
  9. Dmitriev AS, Kyarginsky BE, Panas AI, Puzikov DYu, Starkov SO. Experiments on ultra-wideband direct-chaotic transmission of information in the ultra-high frequency range. Journal of Communications Technology and Electronics. 2002;47(10):1219–1228.
  10. TG4a Proposal for Low Rate DS-UWB (DS-UWB-LR). New-York: IEEE; 2005. http://grouper.ieee.org/groups/802/15/pub/2005/15-05-0021-00-004a-low-ra...
  11. Multi-band OFDM Physical Layer Proposal. IEEE 802.15.3a Working Group submission, Jul. 2003. New-York: IEEE; 2003. 69 p. http://www.ieee802.org/15/pub/2003/Jul03/03268r2P802-15_TG3a-Multi-band-....
  12. Lampe J. Introduction to Chirp Spread Spectrum (CSS) Technology. New-York: IEEE; 2004. http://grouper.ieee.org/groups/802/15/pub/2004/15-04-0353-00-004a-chirp-...
  13. Gerrits JFM, Kouwenhoven MHL, Van der Meer PR, Farserotu JR, Long JR. Principles and Limitations of Ultra-Wideband FM Communications Systems. EURASIP Journal on Applied Signal Processing. 2005;3:382–396.
  14. Dmitriev AS, Kyarginsky BYe, Panas AI, Starkov SO. Experiments on ultra wideband direct chaotic information transmission in microwave band. Int. J. Bifur-cation and Chaos. 2003;13(6):1495–1507. DOI: 10.1142/S0218127403007345.
  15. Dmitriev AS, Kletsov AV, Lactyushkin AM, Panas AI, Starkov SO, Khilinsky AD. Ultrawideband wireless communications based on dynamic chaos. Journal of Communications Technology and Electronics. 2006;51(10):1126–1140. DOI: 10.1134/S1064226906100020.
  16. Dmitriev AS, Kletsov AV, Laktyushkin AM, Panas AI, Starkov SO. Ultra wideband communication based on dynamical chaos. Telecommunications and Radio Engineering. 2008;1:1–17.
  17. Dmitriev A.S., Kletsov A.V., Lfktyushkin A.M., Panas A.I., Sinyakin V. Yu. Platform for design of transceivers using chaotic signals. Telecommunications and Radio Engineering. 2008;1:77–84.
  18. Dmitriev AS, Efremova EV, Kuz’min LV. Chaotic pulse trains generated by a dynamical system driven by a periodic signal. Tech. Phys. Lett. 2005;31(11):961–963. DOI: 10.1134/1.2136965.
  19. Dmitriev AS, Efremova EV, Kuz'min LV, Atanov NV. A train of chaotic pulses generated by a dynamic system driven by an external (periodic) force. Journal of Communications Technology and Electronics. 2006;51(5):557–567. DOI: 10.1134/S1064226906050093.
  20. Atanov NV, Dmitriev AS, Efremova EV et al. Chaotic RF pulses generated by a periodically driven oscillator. Tech. Phys. Lett. 2006;32(8):645–646. DOI: 10.1134/S1063785006080013.
  21. Efremova EV, Atanov NV, Dmitriev JA. Chaotic RF generator based on oscillator with 2.5 degrees of freedom. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(1):23–41. DOI: 10.18500/0869-6632-2007-15-1-23-41.
  22. Dmitriev A, Efremova E, Kuzmin L, Atanov N. Forming pulses in non-autonomous chaotic oscillator. Int. J. Bifurcation and Chaos. 2007;17(10):3443–3448. DOI: 10.1142/S0218127407019184.
Received: 
06.07.2009
Accepted: 
06.07.2009
Published: 
30.10.2009
Short text (in English):
(downloads: 123)