ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Abubakirov E. B., Guznov Y. M., Denisov G. G., Zapevalov V. E., Zavolsky N. A., Zapevalov S. A., Plankin O. P., Rozental R. M., Sedov A. S., Semenov E. S., Chirkov A. V., Shevchenko A. S. W-band relativistic gyrotron project with 5-10 MW output power. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 2, pp. 94-107. DOI: 10.18500/0869-6632-2015-23-2-94-107

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 175)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.69

W-band relativistic gyrotron project with 5-10 MW output power

Autors: 
Abubakirov Eduard Bulatovich, Institute of Applied Physics of the Russian Academy of Sciences
Guznov Yurij Mihajlovich, Institute of Applied Physics of the Russian Academy of Sciences
Denisov Grigorij Gennadevich, Institute of Applied Physics of the Russian Academy of Sciences
Zapevalov Vladimir Evgenevich, Institute of Applied Physics of the Russian Academy of Sciences
Zavolsky Nikolaj Aleksandrovich, Samara State University
Zapevalov Sergej Anatolevich, Institute of Applied Physics of the Russian Academy of Sciences
Plankin Oleg Petrovich, Institute of Applied Physics of the Russian Academy of Sciences
Rozental Roman Markovich, Institute of Applied Physics of the Russian Academy of Sciences
Sedov Anton Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Semenov Evgenij Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Chirkov Aleksej Vasilevich, Institute of Applied Physics of the Russian Academy of Sciences
Shevchenko Aleksandr Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

The 3-mm band relativistic gyrotron excited by 250 keV electron beam with record output parameters (power 5–10 MW, efficiency 35–40%, microwave pulse duration 0.5–1 µs) was developed. The main design solutions of components, such as the electronoptical system forming helical electron beam, the interaction space and the electrodynamic system of microwave output, are presented.

Reference: 
  1. Tantawi S.G. Advanced high frequency acceleration // IEEE International Vacuum Electronics Conference. Monterey, CA, 22–24 April 2014.
  2. Fazio M.V., Tantawi S.G., Dolgashev V.A. Bridging the gap between conventional RF acceleration and laser driven acceleration // Proceedings of LINAC 2014. Geneva, Switzerland, 31 August–5 September 2014. P. 358.
  3. Manheimer W.M., Mesyats G.A., Petelin M.I. Super-high-power microwave radars // Proceedings of the International «Workshop Strong Microwaves in Plasmas». Moscow–Nizhny Novgorod–Moscow, 15–22 August 1993. Vol.2. P. 632. http://www.ipfran.ru/biblio/smp2.html
  4. Skolnik M. Role of radar in microwaves // IEEE Transactions on Microwave Theory and Techniques. 2002. Vol. 50, № 3. P. 625.
  5. Reutova A.G., Ul’maskulov M.R., Sharypov A.K., Shpak V.G., Shunailov S.A., Yalandin M.I., Belousov V.I., Ginzburg N.S., Denisov G.G., Zotova I.V., Rozental R.M., Sergeev A.S. Experimental observation of superradiance in the stimulated scattering of an intense microwave pump wave by a counterpropagating subnanosecond highcurrent relativistic electron bunch// JETP Letters. 2005. Vol. 82, Iss. 5. P. 263.
  6. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V., Kulagin I.S., Lygin V.K., Manuilov V.N., Moiseev M.A. , Rosenthal R.M, Zapevalov V.E. , Zavolsky N.A. X-band, highefficiency relativistic gyrotron // IEEE Trans. on Plasma Sci. 2002. Vol. 30, № 3. P. 840.
  7. Zaitsev N.I., Zavolsky N.A., Zapevalov V.E., Ilyakov E.V., Kulagin I.S., Lygin V.K., Moiseev M.A., Nechaev V.E., Petelin M.I., Rozental R.M. Ten-megawatt pulsed gyrotron with a 1-cm wavelength and a 50% efficiency // Radiophysics and Quantum Electronics. 2003. Vol. 46, Iss. 10. P. 816.
  8. Zapevalov V.E. The gyrotron: Constraints on output-power and efficiency increase// Radiophysics and Quantum Electronics. 2006. Vol. 49, Iss. 10. P. 779.
  9. Tsimring Sh.E. Electron Beams and Microwave Vacuum Electronics. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.
  10. Rzesnicki T., Piosczyk B., Kern S., Illy S., Jianbo J., Samartsev A., Schlaich A., Thumm M. 2.2-MW record power of the 170-GHz European preprototype coaxialcavity gyrotron for ITER // IEEE Transactions on Plasma Science. 2010. Vol. 38, № 6. P. 1141.
  11. Thumm M. Recent advances in the worldwide fusion gyrotron development // IEEE Transactions on Plasma Science. 2014. Vol. 42, №3. P. 590.
  12. Moiseev M.A., Nusinovich G.S. Some results of numerical study of gyrotron equations / Gyrotrons. Gorky: Institute of Applied Physics, 1981. P. 41 (in Russian). http://www.ipfran.ru/biblio/g1.html
  13. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. Theory of non-stationary processes in gyrotrons with low Q resonators // International Journal of Electronics. 1986. 61:6. 881.
  14. Bratman V.L., Ginzburg N.S., Nusinovich G.S., Petelin M.I., Strelkov P.S. Relativistic gyrotrons and cyclotron autoresonance masers // Int. J. Electronics. 1981. Vol. 51, № 4. P. 541.
  15. Zavolsky N.A., Zapevalov V.E., Moiseev M.A. Efficiency enhancement of the relativistic gyrotron // Radiophysics and Quantum Electronics. 2001. Vol. 44, Iss. 4. P. 318.
  16. Zaitsev N.I., Zapevalov S.A., Ilyakov E.V., Kornishin S.Yu., Kofanov S.V., Kryltsov M.Yu., Kulagin I.S., Lygin V.K., Malygin A.V., Manuilov V.N., Movshevich B.Z., Perminov V.G., Petelin M.I., Fiks A.Sh., Shevchenko A.S., Tsalolikhin V.I., Kladukhin V.V., Krasnykh A. 500 keV, 200A microsecond electron accelerator with a repetition rate of 10 Hz // Proceedings of XXI Russian Accelerator Conference. Zvenigorod, 2008. P. 339.
  17. Zaitsev N.I., Gvozdev A.K., Zapevalov S.A., Kuzikov S.V., Manuilov V.N., Moiseev M.A., Plotkin M.E. Experimental study of a multimegawatt pulsed gyroklystron // Journal of Communications Technology and Electronics. 2014. Vol. 59, Iss. 2. P. 16.
  18. Plankin O.P., Semenov V.E. ANGEL 2DS Program Package for Gyrotron Gun Modeling: User’s Guide. Nizhny Novgorod: IAP RAS, 2011 (in Russian).
  19. Plankin O.P., Semenov V.E. Trajectory analysis of the electronic-optical system of technological gyrotron // Vestnik NSU. Series: Physics. 2013. Vol. 8, Iss.2. P. 44 (in Russian).
  20. Belousov V.I., Bogdashov A.A., Denisov G.G., Kurbatov V.I., Malygin V.I., Malygin S.A., Orlov V.B., Popov L.G., Solujanova E.A., Tai E.M., Usachov S.V. The test results of the 84 GHz/200 kW/CW gyrotron // 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating. Nizhny Novgorod, Russia, May 17–20, 2004.
  21. Tsymring Sh.E. Axially symmetric waveguide tapers and transformers // in: Gyrotrons. Gorky: Institute of Applied Physics, 1989. P. 113 (in Russian). http://www.ipfran.ru/biblio/gir.html
  22. Gvozdev A.K., Zharova N.A., Zaitsev N.I., Semenov V.E., Sorokin A.A. Development of a multipactor discharge in the output channel of a powerful pulsed gyroklystron // Technical Physics. 2012. Vol. 57, Iss.10. P. 1394.
  23. Chirkov A.V., Denisov G.G., Kuftin A.N., Zapevalov V.E., Malygin V.I., Moiseev M.A., Kornishin S.Yu. // Technical Physics Letters. 2007. Vol. 33, Iss. 4. P. 350.
  24. Litvak A.G., Denisov G.G., Myasnikov V.E., Tai E.M., Azizov E.A., Ilin V.I. Development in Russia of megawatt power gyrotrons for fusion // Journal of Infrared, Millimeter and Terahertz Waves. 2011. Vol. 32. P.337.
  25. Thumm M. State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Update 2012). Karlsruhe: KIT Scientific Publishing, 2013.
  26. Zaitsev N.I., Ilyakov E.V., Kuzikov S.V., Kulagin I.S., Lygin V.K., Moiseev M.A., Petelin M.I., Shevchenko A.S. Pulsed high-order volume mode gyroklystron // Radiophysics and Quantum Electronics. 2005. Vol. 48, Iss. 10–11. P. 737.
Received: 
07.04.2015
Accepted: 
07.04.2015
Published: 
31.07.2015
Short text (in English):
(downloads: 104)