ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kargovskij A. V. Water clusters: structures and optical vibrational spectra. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 5, pp. 110-119. DOI: 10.18500/0869-6632-2006-14-5-110-119

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 217)
Article type: 

Water clusters: structures and optical vibrational spectra

Kargovskij Aleksej Vladimirovich, Lomonosov Moscow State University

Numerical calculations of structures, Infrared and Raman vibrational spectra of small water clusters are performed by solution of the molecular Schrodinger equation in the X 3LYP/aug-cc-pVQZ theory. Spectral features and evolution of hydrogen bond properties in clusters with their size growth are discussed. Obtained results may be used in molecular dynamics simulations of water.

Key words: 
  1. Honegger E, Leutwyler S. Intramolecular vibrations of small water clusters. J. Chem. Phys. 1988;88:2582–2595. DOI: 10.1063/1.454038.
  2. Knochenmuss R, Leutwyler S. Structures and vibrational spectra of water clusters in the self-consistent-field approximation. J. Chem. Phys. 1992;96:5233–5244. DOI: 10.1063/1.462734.
  3. Jensen F. Introduction to computational chemistry. New York: Wiley-VCH; 1999. 430 p.
  4. Krishnan PN, Jensen JO, Burke LA. Theoretical study of water clusters: hexamer. Chem. Phys. Lett. 1994;217(3):311–318. DOI: 10.1016/0009-2614(93)E1370-V.
  5. Jensen JO, Krishnan PN, Burke LA. Theoretical study of water clusters: octamer. Chem. Phys. Lett. 1995;246(1-2):13–19.
  6. Jensen JO, Krishnan PN, Burke LA. Theoretical study of water clusters: nonamers. Chem. Phys. Lett. 1996;260(3-4):499–506.
  7. Xantheas SS, Dunning TH. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. I. Optimal structures and vibrational spectra. J. Chem. Phys. 1993;99(11):8774–8792. DOI: 10.1063/1.465599.
  8. Xantheas SS. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. II. Analysis of many-body interactions. J. Chem. Phys. 1994;100:7523–7534. DOI: 10.1063/1.466846.
  9. Xantheas SS. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. III. Comparison of density functional with MP2 results. J. Chem. Phys. 1995;102(11):4505–4517. DOI: 10.1063/1.469499.
  10. Kim J, Lee JY, Lee S, Mhin BJ, Kim KS. Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory. J. Chem. Phys. 1995;102(1):310–317. DOI: 10.1063/1.469404.
  11. Kim J, Kim KS. Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies. J. Chem. Phys. 1998;109:5886–5895. DOI: 10.1063/1.477211.
  12. Kim J, Majumdar D, Lee HM, Kim KS. Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer. J. Chem. Phys. 1999;110:9128–9134. DOI: 10.1063/1.478834.
  13. Koch W, Holthausen MC. A Chemist’s Guide to Density Functional Theory. New York: Wiley-VCH; 2001. 293 p.
  14. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5662. DOI: 10.1063/1.464913.
  15. Su JT, Xu X, Goddard III WA. Accurate energies and structures for water clusters. J. Phys. Chem. A. 2004;108(47):10518–10526. DOI: 10.1021/JP047502+.
  16. Xu X, Goddard WA 3rd. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci U S A. 2004;101(9):2673–2677. DOI: 10.1073/pnas.0308730100.
  17. Klopper W, van Duijneveldt de Rijdt J. Computational determination of equilibrium geometry and dissociation energy of the water dimer. Phys. Chem. Chem. Phys. 2000;2(10):2227–2234. DOI: 10.1039/A910312K.
  18. Zhao Y, Truhlar DG. Benchmark databases for nonbonded interactions and their use to test density functional theory. J. Chem. Theory Comput. 2005;(3):415–432. DOI: 10.1021/ct049851d.
  19. Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 1997;106(3):1063–1079. DOI: 10.1063/1.473182.
  20. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys. 1988;38(6):3098–3100. DOI: 10.1103/physreva.38.3098.
  21. Perdew JP. Unified theory of exchange and correlation beyond the local density approximation. Electronic Structure of Solids ’91, Ed. Ziesche P. et al. Berlin: Akademie; 1991. P. 11.
  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. The general atomic and molecular electronics structure systems. J. Comput. Chem. 1993;14:1347.
  23. Granovsky AA. PC GAMESS 7.0 [Electronic resource]. Available from:
  24. Lebedev VI, Skorokhodov AL. Quadrature formulas for a sphere of orders 41,47 and 53. Dokl. Math. 1992;45(3):587–592.
  25. Komornicki A, Fitzgerald G. Molecular gradients and hessians implemented in density functional theory. J. Chem. Phys. 1993;98:1398–1421. DOI: 10.1063/1.465054.
  26. Chaban GM, Jung JO, Gerber RB. Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational selfconsistent field. J. Chem. Phys. 1999;111(5):1823–1829. DOI: 10.1063/1.479452.
  27. Komornicki A, McIver JW. An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene. J. Chem. Phys. 1979;70(4):2014–2016. DOI: 10.1063/1.437627.
  28. Day MB, Kirschner KN, Shields GC. Pople’s Gaussian-3 model chemistry applied to an investigation of (H2O)8 water clusters. Int. J. Quant. Chem. 2005;102(5):565–572. DOI: 10.1002/qua.20371.
  29. Xantheas SS, Burnham CJ, Harrison RJ. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 2002;116(4):1493–1499. DOI: 10.1063/1.1423941.
  30. Fajardo ME, Tam S. Observation of the cyclic water hexamer in solid parahydrogen. J. Chem. Phys. 2001;115(15):6807–6810. DOI: 10.1063/1.1410940.
  31. Buck U, Brudermann J, Lohbrandt P. Surface Vibrations of Large Water Clusters by He Atom Scattering. Phys. Rev. Lett. 1998;80(13):2821–2824. DOI: 10.1103/PHYSREVLETT.80.2821.
  32. Bunkin A, Lukyanchenko V, Pershin S, Kargovsky A, Romanovsky YuM. Narrow Resonances of Water in Hydrogen-Bonded Nanocomplexes: Experiment and Quantum-Mechanical Calculation. Phys. Wave Phen. 2005;13:113–122.
  33. Dolenko TA, Churina IV, Fadeev VV, Glushkov SM. Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media. J. Raman. Spectrosc. 2000;31(8-9):863–870. DOI: 10.1002/1097-4555(200008/09)31:8/93.0.CO;2-C.
Short text (in English):
(downloads: 61)