Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Карговский А. В. Водные кластеры: структуры и оптические колебательные спектры // Известия вузов. ПНД. 2006. Т. 14, вып. 5. С. 110-119. DOI: 10.18500/0869-6632-2006-14-5-110-119

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 230)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
539.2

Водные кластеры: структуры и оптические колебательные спектры

Авторы: 
Карговский Алексей Владимирович, Московский государственный университет имени М.В. Ломоносова (МГУ)
Аннотация: 

Выполнен численный расчет структур и колебательных спектров инфракрасного поглощения и комбинационного рассеяния малых структурных фрагментов воды на основе решения молекулярного уравнения Шредингера методом X3LYP в базисе aug-cc-pVQZ. Обсуждаются спектральные особенности и эволюция свойств водородных связей в кластерах с увеличением размера. Полученные результаты могут быть использованы для расчетов воды методом молекулярной динамики.

Ключевые слова: 
Список источников: 
  1. Honegger E., Leutwyler S. Intramolecular vibrations of small water clusters // J. Chem. Phys. 1988. Vol. 88. P. 2582.
  2. Knochenmuss R., Leutwyler S. Structures and vibrational spectra of water clusters in the self-consistent-field approximation // J. Chem. Phys. 1992. Vol. 96. P. 5233.
  3. Jensen F. Introduction to computational chemistry. N.Y.: Wiley-VCH, 1999.
  4. Krishnan P.N., Jensen J.O., Burke L.A. Theoretical study of water clusters: hexamer // Chem. Phys. Lett. 1994. Vol. 217. P. 311.
  5. Jensen J.O., Krishnan P.N., Burke L.A. Theoretical study of water clusters: octamer // Chem. Phys. Lett. 1995. Vol. 246. P. 13.
  6. Jensen J.O., Krishnan P.N., Burke L.A. Theoretical study of water clusters: nonamers // Chem. Phys. Lett. 1996. Vol. 260. P. 499.
  7. Xantheas S.S., Dunning T.H. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. I. Optimal structures and vibrational spectra // J. Chem. Phys. 1993. Vol. 99. P. 8774.
  8. Xantheas S.S. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. II. Analysis of many-body interactions // J. Chem. Phys. 1994. Vol. 100. P. 7523.
  9. Xantheas S.S. Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. III. Comparison of density functional with MP2 results // J. Chem. Phys. 1995. Vol. 102. P. 4505.
  10. Kim J., Lee J.Y., Lee S., Mhin B.J., Kim K.S. Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory // J. Chem. Phys. 1995. Vol. 102. P. 310.
  11. Kim J., Kim K.S. Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies // J. Chem. Phys. 1998. Vol. 109. P. 5886.
  12. Kim J., Majumdar D., Lee H.M., Kim K.S. Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer // J. Chem. Phys. 1999. Vol. 110. P. 9128.
  13. Koch W., Holthausen M.C. A Chemist’s Guide to Density Functional Theory. N.Y.: Wiley-VCH, 2001.
  14. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. Vol. 98. P. 5648.
  15. Su J.T., Xu X., Goddard III W.A. Accurate energies and structures for water clusters // J. Phys. Chem. A. 2004. Vol. 108. P. 10518.
  16. Xu X., Goddard III W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties // PNAS 2004. Vol. 101. P. 2673.
  17. Klopper W., van Duijneveldt de Rijdt J. Computational determination of equilibrium geometry and dissociation energy of the water dimer // Phys. Chem. Chem. Phys. 2000. Vol. 2. P. 2227.
  18. Zhao Y., Truhlar D.G. Benchmark databases for nonbonded interactions and their use to test density functional theory // J. Chem. Theory Comput. 2005. Vol. 1. P. 415.
  19. Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation // J. Chem. Phys. 1997. Vol. 106. P. 1063.
  20. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior // Phys. Rev. A. 1988. Vol. 38. P. 3098.
  21. Perdew J.P. Unified theory of exchange and correlation beyond the local density approximation // Electronic Structure of Solids ’91, Ed. Ziesche P. et al. Berlin: Akademie, 1991. P. 11.
  22. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. The general atomic and molecular electronics structure systems // J. Comput. Chem. 1993. Vol. 14. P. 1347.
  23. Granovsky A.A. PC GAMESS 7.0 http://classic.chem.msu.su/gran/gamess/index.html.
  24. Лебедев В.И., Скороходов А.Л. Квадратурные формулы 41, 47, и 53 порядка для сферы // ДАН. Серия Математика. 1992. T. 45. C. 587.
  25. Komornicki A., Fitzgerald G. Molecular gradients and hessians implemented in density functional theory // J. Chem. Phys. 1993. Vol. 98. P. 1398.
  26. Chaban G.M., Jung J.O., Gerber R.B. Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational selfconsistent field // J. Chem. Phys. 1999. Vol. 111. P. 1823.
  27. Komornicki A., McIver J.W. An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene // J. Chem. Phys. 1979. Vol. 70. P. 2014.
  28. Day M.B., Kirschner K.N., Shields G.C. Pople’s Gaussian-3 model chemistry applied to an investigation of (H2O)8 water clusters // Int. J. Quant. Chem. 2005. Vol. 102. P. 565.
  29. Xantheas S.S., Burnham C.J., Harrison R.J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles // J. Chem. Phys. 2002. Vol. 116. P. 1493.
  30. Fajardo M.E., Tam S. Observation of the cyclic water hexamer in solid parahydrogen // J. Chem. Phys. 2001. Vol. 115. P. 6807.
  31. Buck U., Brudermann J., Lohbrandt P. Surface Vibrations of Large Water Clusters by He Atom Scattering // Phys. Rev. Lett. 1998. Vol. 80. P. 2821.
  32. Bunkin A., Lukyanchenko V., Pershin S., Kargovsky A., Romanovsky Yu.M. Narrow Resonances of Water in Hydrogen-Bonded Nanocomplexes: Experiment and Quantum-Mechanical Calculation // Phys. Wave Phen. 2005. Vol. 13. P. 113.
  33. Dolenko T.A., Churina I.V., Fadeev V.V., Glushkov S.M. Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media // J. Raman. Spectrosc. 2000. Vol. 31. P. 863.
Поступила в редакцию: 
01.04.2006
Принята к публикации: 
01.04.2006
Опубликована: 
30.11.2006
Краткое содержание:
(загрузок: 64)