ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


instability

Radiative processes, radiation instability and chaos in the radiation formed by relativistic beams moving in three-dimensional (two-dimensional) space-periodic structures (natural and photonic crystals)

We review the results of studies of spontaneous and stimulated emission of relativistic particles in natural and photonic crystals. We consider the diffraction of electromagnetic waves in a crystal, and the resonance and parametric (quasi-Cherenkov) X-ray radiation, the radiation in the channeling of relativistic particles in crystals, diffraction radiation in conditions of channeling, diffraction radiation of a relativistic oscillator, induced radiation in multidimensional space-periodic resonators (natural or artificial (electromagnetic, photonic) crystals).

Sergey P. Kurdyumov and his evolutionary model of dynamics of complex systems

Sergei P. Kurdyumov (1928–2004) and his distinguished contribution in the development of the modern interdisciplinary theory and methodology of study of complex selforganizing systems, i.e. synergetics, is under consideration in the article. The matter of a mathematical model of evolutionary dynamics of complex systems elaborated by him is demonstrated. The nonlinear equation of heat conductivity serves as a basis of the model. Under certain conditions, it describes dynamics of development of structures of different complexity in the blow-up regime.

Dynamical chaos: the difficult path discovering

Dynamic chaos – a remarkable milestone development of science of the last centuryhas attracted the attention of different areas of knowledge. Chaos theory describes not only a wide range of phenomena in various fields of physics and other natural sciences and penetrates into the humanitarian sphere, but also significantly influenced the scientific picture of the world.

Nonlinear dynamics of long mirrorless fiber raman laser

Numerical model of long fiber Raman laser is proposed. The model based on the equations, describing the propagation of pump and Stokes waves, linear coupling of oppositely running waves due to scattering and its nonlinear interaction. The derivation of equations for slowly varying pulse envelopes uses the field decomposition in terms of spatial harmonics rather then commonly used temporal harmonics, which allows to avoid the two­point boundary conditions, and to employ the numerical scheme of Courant–Isaakson–Rees.

The relation between the nonlinear analysis, bifurcations and nonlinear dynamics (on the example of voronezh school of nonlinear functional analysis)

The paper is devoted to some historical aspects of the rapidly developing field of modern mathematics – nonlinear functional analysis, which is presented as the basis of the mathematical apparatus of nonlinear dynamics. Its methods are demonstrated on the example of bifurcation. The first bifurcations problem – Euler problem on elastic instability rod under longitudinal compressive forces is considered. The formation of Voronezh school of functional analysis and its role in the development of nonlinear analysis in general is also discussed.

Turbulence in microwave electronics: teoretical approaches and experimental results

A review of the current state of different theoretical approaches to the description of turbulence in electron beams and electronic devices at microwave frequencies is shown. A three types of turbulent (nonlaminar) electron beams were considered. The first type of turbulent electron beam is caused by the intersection of electronic trajectories (e.g., due to thermal velocity) and it is common to the flow of electrons at all.