ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Магнонный кристалл

Electrodynamical characteristicsof periodic ferromagnetic structures

The periodic structure consisting of a shallow grooves on a surface of a ferromagnetic ?lm was investigated. The electrodynamical characteristics of propagation of the surface magnetostatic wave in this structure were obtained. The 2D model of the periodical Yttrium Iron Garnet structure was numerically studied by the algorithm based on the Finite Element method. The spatial distribution of the electric and magnetic ?eld components in di?erent points of dispersion characteristics was studied in detail.

Features of formation of band gaps in coupled structures based on magnonic crystals

There are introduced ferromagnetic periodic structures consist of two coupled magnonic crystals and related magnonic and crystal film, separated by a dielectric layer. The dispersion equation made for magnetostatic waves, that propagate in such structures and identified main features of formation band gaps and a comparison with a periodic structure of one magnonic crystal was made.

Mechanisms of formation of envelope solitons in periodic ferromagnetic structures

Features of envelope solitons formation in one­dimensional periodic ferromagnetic structure were considered. The model based on the coupled nonlinear Schrodinger equations was used for investigation. The parameter region was calculated in which solitons similar Bragg solitons with different features can arise. Mechanisms of the formation of the solitons localized on the limited length of the structure with different excitation technique were considered.

Influence of parametric instability of magnetostatic surface spin waves on formation of defect modes in one-dimensional magnonic crystal with defect

Propagation of nonlinear magnetostatic surface waves through the one-dimensional magnonic crystal based on yttrium-iron garnet film with the defect of periodic array was experimentally studied. Interest in the study of the magnonic crystals with defects is caused by the possibility of exciting of defect modes inside the forbidden gaps of MSSW spectrum that can be used to enhance the non-linear effects and signals control in the microwave range.