Для цитирования:
Шараевская А. Ю., Попов П. А., Осокин С. А. Численное моделирование распространения магнитостатических волн в связанных магнонных кристаллах меандрового типа // Известия вузов. ПНД. 2020. Т. 28, вып. 4. С. 425-434. DOI: 10.18500/0869-6632-2020-28-4-425-434
Численное моделирование распространения магнитостатических волн в связанных магнонных кристаллах меандрового типа
Цель работы состоит в обобщении результатов численных исследований для связанных магнонных меандровых структур в случае распространения в таких структурах разных типов магнитостатических волн. Методы. Для решения поставленных задач использовалось два известных метода – конечных элементов и конечных разностей для связанных ферромагнитных структур. Для численного решения методом конечных элементов в магнитостатическом приближении использовались уравнения магнитостатики, полученные из уравнений Максвелла. Для расчета внутренних эффективных полей было проведено микромагнитное моделирование с привлечением метода конечных разностей. Результаты. Проведены исследования особенностей распространения магнитостатических спиновых волн в связанных периодических сложных структурах в виде двух связанных меандровых магнонных кристаллов, разделенных диэлектрическим слоем, на основе численного моделирования методом конечных элементов. Показано, что используемый метод позволяет получить дисперсионные уравнения для поверхностных, прямых объемных и обратных объемных магнитостатических волн, распространяющихся в таких структурах, и выявить основные особенности дисперсионных характеристик этих волн. Заключение. Показано, что при определенных условиях в спектрах появляются запрещенные зоны, обусловленные брэгговским отражением и сложной структурой магнонного волновода. Ширина и положение этих запрещенных зон зависит от параметров магнитных пленок, их геометрических размеров и направления постоянного магнитного поля. Полученные результаты могут быть реализованы при создании на основе магнонных кристаллов частотно-избирательных устройств для селективной обработки информационных сигналов в СВЧ-диапазоне.
- Kruglyak V.V., Demokritov S.O., Grundler D. Magnonoics // Journal of Physics: Applied Physics. 2010. Vol. 43, no. 26. P. 264001.
- Chumak A.V., Vasyuchka V.I., Serga A.A., Hillebrands B. Magnon spintronics // Nature Physics. 2015. Vol. 11, no. 6. P. 453.
- Никитов С.А., Калябин Д. В., Лисенков И.В. Магноника – новое направление спинтроники и спин-волновой электроники // Успехи физических наук. 2015. Т. 185, № 10. С. 1009.
- Nikitov S.A., Tailhades P., Tsai C.S. // J. Magn. Magn. Mater. 2001. Vol. 236, no. 3. P. 320.
- Chumak A.V., Serga A.A., Hillebrands B. Spin waves in periodic magnetic structures – mangonic crystals // Journal of Physics: Applied Physics. 2017. Vol. 50, no. 24. P. 244001.
- Sander D., Valenzuela S.O., Makarov D. et al. The 2017 magnetism roadmap // Journal of Physics: Applied Physics. 2017. Vol. 50, no. 36. P. 363001.
- Krawczyk M., Puszkarski H. Plane-wave theory of three-dimensional magnonic crystals // Physical Review B. 2008. Vol. 77, no. 5. 054437.
- Graczyk P., Krawczyk M., Dhuey S. et al. Magnonics band gap and mode hybridization in continuous permalloy film induced by vertical coupling with an array of permalloy ellipses// https://arxiv.org/abs/1805.12178.
- Demidov V.E., Urazhdin S., Zholud A. et al. Spin-current nano-oscillator based on nonlocal spin injection // Scientific Reports. 2015. Vol. 5. P. 8578.
- Demidov V.E., Kostylev M.P., Rott K. et al. Excitation of short-wavelength spin waves in magnonic waveguides // Applied Physics Letters. 2011. Vol. 99, no. 8. P. 082507.
- Spin Wave Confinement – Propagating Waves / Ed. S.O. Demokritov. Singapore: Pan Stanford Publishing Pte. Ltd., 2017.
- Morozova M., Sharaevskaya A., Sadovnikov A. et al. Band gap formation and control in coupled periodic ferromagnetic structures // Journal of Applied. Physics. 2016. Vol. 120, no. 22. P. 223901.
- Beginin E.N., Sadovnikov A.V., Sharaevskaya A.Y. et al. Spin wave steering in three-dimensional magnonic networks // Applied Physics Letters. 2018. Vol. 112, no. 12. P. 122404.
- Popov P.A., Sharaevskaya A.Yu., Beginin E.N. et al. Spin wave propagation in three-dimensional magnonic crystals and coupled structures // J. Magn. Magn. Mater. 2019. Vol. 476. P. 423–427.
- Popov P.A., Sharaevskaya A.Yu., Kalyabin D.V., Stognii A.I., Beginin E.N, Sadovnikov A.V., Nikitov S.A. Magnetostatic Spin Waves in 3D Ferromagnetic Structures // Journal of Communications Technology and Electronics. 2018. Vol. 63, no. 12. P. 1431.
- Stancil D.D., Prabhakar A. Spin Waves. Theory and Applications. N.Y.: Springer, 2009.
- Kabos P., Stalmachov V. Magnetostatic Waves and their Application: Springer, 1994. P. 5–37. (Chapman & Hall, 1994).
- Damon R.W., Eschbach J. Magnetostatic modes of a ferromagnet slab // J. Phys. Chem. Solids. 1961. Vol. 19, no. 3–4. P. 308.
- Calculated using COMSOL Multiphysics software from COMSOL, Inc.
- Vansteenkiste A., Leliaert J., Dvornik M. et al. The design and verification of MuMax3 // AIP Advances. 2014. Vol. 4, no. 10. P. 107133.
- 1659 просмотров