ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


neural network

Ring generator of neuron-like activity with tunable frequency

The aim of the work is to build a radiophysical generator of neuron-like activity with a frequency tunable in various ways, corresponding to modern ideas about the structure of the hippocampus and the generation of pathological epileptic rhythms in it. Methods. The elements of the generator are radio engineering implementations of the complete FitzHugh– Nagumo neuron and the electronic implementation of a chemical synapse in the form of a sigmoid function with a delayed argument. The simulation was carried out in the SPICE simulator. Results.

The phenomenon of self-referential phase reset in ensembles of interacting FitzHugh–Nagumo neurons

The phenomenon of self-referential phase reset are investigated in ensembles of interacting FitzHugh–Nagumo neurons with different topology of couplings. It is shown that the reset phase of neurons oscillation is independent of the initial phase and is defined by the stimulus parameters. This process does not require direct influence on all elements of the ensemble and takes place when stimulus is applied to one of the interacting neurons only. The influence of inter-neuron couplings and stimulus parameters on ensemble dynamics and phase reset phenomenon is studied.