ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Full text PDF(Ru):
(downloads: 119)
Language: 
Russian
Article type: 
Article
UDC: 
537.86

Influence of input signal power on magnetostatic surface waves propagation in yttrium-iron garnet films on silicon substrates

Autors: 
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Stognij Aleksandr Ivanovich, Scientific-Practical Materials Research Centre NAS of Belarus
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Yttrium iron garnet (YIG) films on silicon substrates (Si) are of a great interest due to compatibility of their fabrication with semiconductor technologies and, thus, possible integration of magnonic and electronic devices on one chip. However, features of spin wave propagation in YIG films on semiconductor substrates remain almost unexplored. In this work with the help of network analyzer and microwave probe station we investigate the influence of input signal power on propagation of magnetostatic surface waves (MSSW) in the delay line structures based on YIG/Si films deposited by ion-beam evaporation. It is shown that dependence of output MSSW power (Pout) on input power level (Pin) is determined by the position of MSSW frequency relative to the frequency fmax corresponding to the maximum of MSSW transmission spectrum. For frequencies f > fmax the dependence Pout(Pin) monotonically decreases with input power growth while at frequencies f < fmax it has the maximum. Such behavior is qualitatively different from the dependences Pout(Pin) of epitaxial YIG films on substrates from gadolinium-gallium garnet (GGG). We assume that described features result from the higher damping level (two orders greater) of spin waves in YIG/Si films comparing to the epitaxial YIG/GGG structures. As a consequence, thresholds of MSSW parametric instability considerably increase, MSSW spectrum shifts towards the lower frequencies because of dynamic demagnetization and thermal heating induced by microwave power of propagating wave. In turn, this shift strongly influences the behavior of Pout(Pin) dependence. Thus, the described effect should be considered for the identification of true thresholds of parametric instability of spin waves in YIG/Si films.

Reference: 
  1. Harris V.G., Geiler A., Chen Y., Yoon S. D., Wu M., Yang A., Chen Z., He P., Parimi P.V., Zuo X., Patton C.E., Abe M., Acher O., Vittoria C. Recent advances in processing and applications of microwave ferrites. JMMM. 2009. Vol. 321. P. 2035–2047.
  2. Chen Z., Harris V.G. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits. J. Appl. Phys. 2012. Vol. 112. 081101.
  3. Glass H. Ferrite films for microwave and millimeter-wave devices. Proc. IEEE. 1988. Vol. 76. Issue 2. P. 151–158.
  4. Andreev A.S., Gulyaev Yu. V., Zil’berman P.E., Kravchenko V.B., Lugovskoi A.V., Ogrin Yu. F., Temiryazev A.G., Filimonova L.M. Propagation of magnetostatic waves in yttrium iron garnet films of submicron thickness. JETP. 1984. Vol. 59. N. 3. P. 586–591.
  5. Gulyaev Yu.V., Zil’berman P.E.; Nikitov S.A., Temiryazev A.G. Instability of strong magnetostatic waves in normally magnetized thin ferromagnetic films. Sov. Phys. Solid State. 1987. Vol.29, N. 6. P.1031–1034.
  6. Adam J. D., Owens J. M., Collins J. H. Studies of FMR Linewidth in Thick YIG Films Grown by Liquid Phase Epitaxy. AIP Conference Proceedings. 1974. Vol. 18. P. 1279.
  7. Syvorotka I.I., Syvorotka I.M., Ubizskii S.B. Thick Epitaxial YIG Films with Narrow FMR Linewidth. Solid State Phenomena. 2013. Vol. 200. P. 250–255.
  8. Neusser S., Grundler D. Magnonics: Spin Waves on the Nanoscale. Advanced materials. 2009. Vol. 21. P. 2927–2932.
  9. Kruglyak V.V., Demokritov S.O., Grundler D. Magnonics. J.Phys. D: Appl. Phys. 2010. Vol. 43. 264001 (14 pages).
  10. Sun X.Y., Du Q., Goto T., Onbasli M.C., Kim D.H., Aimon N.M., Hu J., Ross C.A. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photonics. 2015. Vol. 2. P. 856–863.
  11. Karim R., Oliver S.A., Vittoria C. Laser ablation deposition of YIG films on semiconductor and amorphous substrates. IEEE Trans. Magn. 1995. Vol. 31. Issue 6. P. 3485–3487.
  12. Zheng H., Qin H., Zheng P., Deng J., Zheng L., Han M. Preparation of low ferromagnetic resonance linewidth yttrium iron garnet films on silicon substrate. Appl. Surf. Sci. 2014. Vol. 307. P. 661–664.
  13. Yang Q., Huaiwu Z., Yingli L., Qiye W. Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates. IEEE Trans. On Magn. 2007. Vol. 43. Issue 9. P. 3652–3655.
  14. Boudiar T., Payet-Gervey B., Blanc-Mignon M.-F., Rousseau J.J., Le Berre M., Joisten H. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering. JMMM. 2004. Vol. 284. P. 77–85.
  15. Stognij A.I., Lutsev L.V., Bursian V.E., Novitskii N.N. Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates. J. Appl. Phys. 2015. Vol. 118. 023905.
  16. Bandyopadhyay A.K. , Rios S.E., Fritz S., Garcia J., Contreras J., Gutierrez C.J. Ion beam sputter-fabrication of Bi-YIG films for magnetic photonic applications. IEEE Trans. on Magn. 2004. Vol. 40. P. 2805–2807.
  17. Yao S., Sato T., Kaneko K., Murai S., Fujita K., Tanaka K. Preparation of yttrium iron garnet thin films by mist chemical vapor deposition method and their magnetooptical properties. Jap. Jour. Appl. Phys. 2014. Vol. 53. 05FB17(5 pages).
  18. Rehspringer J.-L., Bursik J., Niznansky D., Klarikova A. Characterization of bismuthdoped yttrium iron garnet layers prepared by sol-gel process. JMMM. 2000. Vol. 211. P. 291–295.
  19. Todorovska R., Groudeva-Zotova St., Todorovsky D., Tzvetkov G., Stefanov P. Highly crystalline Y3Fe5O12 thin films by citric spray pyrolysis. Jour. Mat. Synth. Proc. 2002. Vol. 10, Issue 5. P. 283–288.
  20. Gurevich A.G., Melkov G.A. Magnetization Oscillations and Waves. Boca Raton. CRC Press, Inc. 1996. P. 445.
  21. Stancil D.D., Prabhakar A. Spin Waves. Theory and Application. New York, USA. Springer Science + Business Media, LLC. 2009. 355 p.
  22. Melkov G.A. Influence of parametrically excited spin waves on relaxation processes in ferrites. Fizika Tverdogo Tela. 1975. Vol. 17, Issue 6. P. 1728–1733 (in Russian).
  23. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films . J. Exper. Theor. Phys. 1999. Vol. 88. Issue 1. P. 174–181.
  24. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. Four-magnon decay of magneto static surface waves in yttrium iron garnet films. Phys. Solid State. 1997. Vol. 39, Issue 2. P. 288–295.
  25. Lax B. and Button K.J. Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New York, 1962.
  26. Khivintsev Y., Kuanr B., Fal T.J., Haftel M., Camley R.E., Celinski Z., Mills D.L. Nonlinear ferromagnetic resonance in Permalloy films: A nonmonotonic powerdependent frequency shift. Phys. Rev. B. 2010. Vol. 81. 054436 (6 pages).
  27. Hurben M.J., Patton C.E. Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films. J. Appl. Phys. 1988. Vol. 83. P. 4344–4365.
  28. Landeros P., Arias R.E., Mills D.L. Two magnon scattering in ultrathin ferromagnets: The case where the magnetization is out of plane. Phys. Rev. B. 2008. Vol. 77. 214405.
  29. Damon R.W. and Eshbach J.R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961. Vol. 19. P. 308.
  30. Schilz W. Spin-wave propagation in epitaxial YIG films. Philips Res. Reports. 1973. Vol. 28. P. 50–65. 31. Chikazumi S. Physics of Ferromagnetism. Second edition. Oxford University Press, 1997. See page 128 of total 655 pages.
  31. Anderson E.E., Muhson H.J., Arajs S., Stelmach A.A., Tehan B.L. Critical Exponent for the Magnetization of YIG. J. Appl. Phys. 1970. Vol. 41. Issue 3. P. 1274–1276.
  32. Yakovlev Y.M., Gendelev S.Sh. Ferrite monocrystals in radioelectronics. Moscow. Sov. Radio. 1975. 360 p. (in Russian);
  33. Starodubcev Y. Magnetic materials: Encyclopedic dictionary-handbook. Moscow. Technosphera. 2011. 640 p. (in Russian).
Received: 
01.12.2016
Accepted: 
18.01.2017
Published: 
28.02.2017
Short text (in English):
(downloads: 82)