ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Makarenko N. G., Knjazeva I. S. Multifractal analysis of digital images. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 5, pp. 85-98. DOI: 10.18500/0869-6632-2009-17-5-85-98

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 193)
Language: 
Russian
Article type: 
Review
UDC: 
528.854

Multifractal analysis of digital images

Autors: 
Makarenko Nikolaj Grigorevich, Federal state budgetary institution of science Main (Pulkovo) astronomical Observatory of Russian Academy of Sciences
Knjazeva Irina Sergeevna, Federal state budgetary institution of science Main (Pulkovo) astronomical Observatory of Russian Academy of Sciences
Abstract: 

The article is based on the lecture that was given by the first author at the school StatInfo-2009. In the first part the microcanonical variant of multifractal formalism is reviewed. Possibilities for digital image analysis and reconstruction are discussed at the level of technical strictness.

Reference: 
  1. Barnsley M. Fractals Everywhere. New-York: Academic Press; 1988. 531 p.
  2. Falconer K. Fractal Geometry. Mathematical Foundations and Applications. Wiley; 2003. 367 p.
  3. Falconer K. Techniques in Fractal Geometry. New-York: Wiley & Sons. 1997. 256 p.
  4. Makarenko NG, Karimova LM, Muhamedzhanova SA, Knjazeva IS. Iterated function system and marcovian prediction of time series. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(6):3–20. DOI: 10.18500/0869-6632-2006-14-6-3-20.
  5. Zel'dovich YaB, Sokoloff DD. Fractals, similarity, intermediate asymptotics. Phys. Usp. 1985;28(7):608–616. DOI: 10.3367/UFNr.0146.198507d.0493.
  6. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I I, Shraiman BI. Fractal measures and their singularities: The characterization of strange sets. Phys Rev A Gen Phys. 1986;33(2):1141–1151. DOI: 10.1103/physreva.33.1141.
  7. Grassberger P, Procaccia I. On the characterization of strange attractors. Phys.Rev. Lett. 1983;50(5):346–349. DOI: 10.1103/PHYSREVLETT.50.346.
  8. Falconer KJ. The multifractal spectrum of statistically self-similar measures. J. Theor. Prob. 1994;7(3):681–702. DOI: 10.1007/BF02213576.
  9. Mach J, Mas F, Saguиs F. Two representations in multifractal analysis. J.Phys. A: Math.Gen. 1995;28:5607–5622.
  10. Pavlov AN, Anishchenko VS. Multifractal analysis of complex signals. Phys. Usp. 2007;50(8):819–834. DOI: 10.3367/UFNr.0177.200708d.0859.
  11. Korolenko PV, Maganova MS, Mesnyankin AV. New methods for the analysis of the stochastic processes and structures in optics. The fractal and multifractal methods and wavelet transformations. Moscow: MSU; 2004. 82 p. (In Russian).
  12. Riedi RH. Multifractal processes. Long-range dependence: theory and applications. Eds P. Doukhan, G. Oppenheim and M.S. Taqqu. Boston: Birkhauser, 2002. P. 625.
  13. Feder E. Fractals. Moscow: Mir; 1991. 260 p. (In Russian).
  14. Bozhokin SV, Parshin DA. Fractals and multifractals. Moscow-Izhevsk: Institute of Computer Sciences; 2001. 128 p. (In Russian).
  15. Harte D. Multifractals: theory and applications. Boca Raton, London, New York, Washington: CRC Press, 2001. 247 p.
  16. Jaffard S. Multifractal formalism for functions. Part I: Results valid for all functions. SIAM J. Math. Anal. 1997;28(4):944–970. DOI: 10.1137/S0036141095282991.
  17. Fraysse A, Jaffard St. How smooth is almost every function in a Sobolev space? Rev. Mat. Iberoamericana. 2006;22(2):663–682. DOI: 10.4171/RMI/469.
  18. Arneodo A, Bacry E, Muzy JF. The thermodynamics of fractals revisited with wavelets. Physica A. 1995;213(1-2):232–275. DOI: 10.1016/0378-4371(94)00163-N.
  19. Turiel A, Yahia H, Perez-Vicente CJ. Microcanonical multifractal formalism – a geometrical approach to multifractal systems: Part 1. Singularity analysis. J. Phys. A: Math. Theor. 2008;41(1):015501–015536. DOI: 10.1088/1751-8113/41/1/015501.
  20. Edgar G. Measure, Topology, and Fractal Geometry. New-York: Springer; 2008. 268 p.
  21. Morgan F. Geometric Measure Theory. A Beginner’s Guide. Boston: Academic Press; 2000. 145 p.
  22. Ziemer WP. Weakly differentiable functions, Graduate Texts in Mathematics. Vol. 120, New York: Springer-Verlag; 1989. 370 р.
  23. Barreira L, Pesin Y, Schmeling J. On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos. 1997;7(1):27–38. DOI: 10.1063/1.166232.
  24. Barriere О, Levy Vehel J. Local Holder regularity-based modeling of RR intervals. CBMS 2008. 21th IEEE Internat. Symp. on Computer-Based Medical Systems, June 17–19, 2008, Jyvaskyla, Finland; 2008. DOI: 10.1109/CBMS.2008.65.
  25. Daoudi K, Levy Vehel J, Meyer Y. Construction of continuous functions with prescribed local regularity. Constructive Approximation. 1998;014(03):349–385. DOI: 10.1007/s003659900078.
  26. Mallat St, Hwang W. Singularity detection and processing with wavelets. IEEE Trans. Info. Theory. 1992;38(2):617–643. DOI: 10.1109/18.119727.
  27. Mallat St. A Wavelet Tour of Signal Processing. Boston: Academic Press; 1999. 851 p.
  28. Turiel A, Parga N. The multifractal structure of contrast changes In natural images: from sharp edges To textures. Neural Comput. 2000;12(4):763-793. DOI: 10.1162/089976600300015583.
  29. Turiel A, Perez-Vicente CJ, Grazzini J. Numerical methods for the estimation of multifractal singularity spectra: a comparative study. J. Computat. Phys. 2006;216(1):362–390. DOI :10.1016/j.jcp.2005.12.004.
  30. Makarenko NG. Geometry of images. Lectures on neuroinformatics. Moscow: MEPhI; 2009. P. 89. (In Russian).
  31. Chan T.F., Shen J. Image processing and analysis. Variational, PDE, wavelet and stochastic methods. Philadelphia: SIAM; 2005. 400 p.
  32. Florack LMJ. Mathematical Techniques for Image Analysis. The Netherlands: Eindhoven University of Technology; 2008. 100 p.
  33. Pont O, Turiel A, Perez-Vicente CJ. Applications of the microcanonical formalism to monofractal systems. Phys. Rev. E. 2006;74(6):061110. DOI: 10.1103/PhysRevE.74.061110.
  34. Levy Vehel J, Vojak R. Multifractal analysis of Choquet capacities: Preliminary results. Advances in Applied Mathematics. 1998;20(1):1–43.
  35. Makarenko NG, Kruglun OA, Makarenko IN, Karimova LM. Multifractal segmentation of remote sensing data. Issledovanie Zemli Iz Kosmosa. 2008;3:18–26.
  36. Riedi R, Scheuring I. Conditional and relative multifractal spectra. Fractals. 1997;5(1):153–168. DOI: 10.1142/S0218348X97000152.
  37. Turiel A, del Pozo A. Reconstructing images from their most singular fractal manifold. IEEE Trans. on Image Processing. 2002;11(4):345–350. DOI: 10.1109/TIP.2002.999668.
Received: 
08.07.2009
Accepted: 
08.07.2009
Published: 
30.10.2009
Short text (in English):
(downloads: 109)