ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kozhevnikov A. V., Dudko G. M., Khivintsev Y. V., Sakharov V. K., Vysotskii S. L., Nikulin Y. V., Pavlov E. S., Khitun A. G., Filimonov Y. A. Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film. Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, vol. 28, iss. 2, pp. 168-185. DOI: 10.18500/0869-6632-2020-28-2-168-185

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 255)
Language: 
Russian
Article type: 
Article
UDC: 
537.622.2; 537.862

Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film

Autors: 
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Pavlov Evgenij Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Khitun Aleksander Georgievich, University of California-Riverside
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Subject. We studied the effect of magnetic field H direction on the spectrum of the output signals in a 4-port cross-shaped structure where magnetostatic surface waves (MSSW) are excited by an input transducer under the condition of the first-order parametric instability (three-magnon).

Objective. To detect the influence of nonreciprocal effects on the development of parametric instability of spin waves (SW) in tangentially magnetized multiport microstructures based on films of yttrium iron garnet (YIG).

Methods. The experiments were carried out for a cross structure from YIG film with the thickness  d ≈ 3.8 mm, in the form of two orthogonal waveguides having a width w ≈500 mm and a length L ≈3 mm with the SW wire antennas placed at the ends of the waveguides, where one of antennas on the transversely magnetized waveguide was considered as an input.

Results. It has been found that at the output antennas located near the ends of the longitudinally magnetized waveguide and oriented perpendicular to magnetic field, the SW spectra are qualitatively different and nonreciprocal with respect to the field direction H or to the change in the propagation direction of the MSSW pumping signal.

Discussion. The observed effect is associated with the nonreciprocal character of propagation of both the pumping wave and waves generated at parametric instability condition.

Reference: 
  1. Damon R. W. and Eshbach J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids, 1961, vol. 19, pp. 308–320. doi:10.1016/0022-3697(61)90041-5
  2. Gurevich А.G., Melkov G.А. Magnetization Oscillations and Waves. CRC Press. Boca Raton, 1996, 464 p.
  3. Schneider T., Serga A. A., Neumann T., Hillebrands B., and Kostylev M. P. Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B. 2008, vol. 77, p. 214411. doi:10.1103/PhysRevB.77.214411
  4. Demidov V.E., Kostylev M.P., Rott K., Krzysteczko P., Reiss G., Demokritov S.O. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett., 2009, vol. 95, p. 112509. doi:10.1063/1.3231875
  5. Sekiguchi K., Yamada K., Seo S.M., Lee K.J., Chiba D., Kobayashi K., Ono T. Nonreciprocal emission of spin-wavepacket in FeNi film. Appl. Phys. Lett. 2010, vol. 97, p. 022508. doi:10.1063/1.3464569
  6. Deorani P., Kwon J.H., Yang H. Nonreciprocity engineering in magnetostatic spin waves. Current Applied Physics, 2014, vol. 14, p. S129. doi:10.1016/j.cap.2013.11.008
  7. Shibata K., Kasahara K., Nakayama K., Kruglyak V.V., Aziz M.M., Manago T. Dependence of non-reciprocity in spin waveexcitation on antenna configuration. J. Appl. Phys., 2018, vol. 124, no. 2, p. 43901. doi:10.1063/1.5068722
  8. Lisenkov I., Kalyabin D., Osokin S., Klos J.W., Krawczyk M., Nikitov S. Nonreciprocity of edge modes in 1D magnonic crystal. JMMM, 2015, vol. 46, no. 43, pp. 313–319. doi:10.1016/j.jmmm.2014.10.073
  9. Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Yu.A., Kalyabin D.V., Lisenkov I.V., Nikitov S.A. Nonreciprocity of spin waves in metallized magnonic crystal. New Journal of Physics, 2013, vol. 15, p. 113023.
  10. Vysotskii, S.L., Nikitov, S.A., Pavlov, E.S. et al. Bragg resonances of magnetostatic surface waves in a ferrite–magnonic-crystal–dielectric–metal structure. J. Commun. Technol. Electron., 2013, vol. 58, no. 4, pp. 347–352 . doi.org/10.1134/S1064226913040165
  11. Beginin E.N., Filimonov Yu.A., Pavlov E.S., Vysotskii S.L., Nikitov S.A. Bragg resonances of magnetostatic surface spin waves in a layered structure: magnonic crystal–dielectric–metal. Appl. Phys. Lett., 2012, vol. 100, p. 252412.
  12. Vysotsky S.L., Beginin E.N., Nikitov S.A., Pavlov E.S., Filimonov Yu.A. Effect of ferrite magnonic crystal metallization on Bragg resonances of magnetostatic surface waves. Technical Physics Letters, 2011, vol. 37, no. 11, pp. 1024–1026.
  13. Jamali M., Kwon J. H., Seo S.-M., Lee K.-J., Yang H. Spin wave nonreciprocity for logic device applications. Sci. Rep., 2013, vol. 3, 03160.
  14. Sato, N. Sekiguchi K., and Nozaki Y. Electrical demonstration of spin-wave logic operation. Appl. Phys. Express, 2013, vol. 6, 063001. doi:10.7567/APEX.6.063001
  15. Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials. IEEE Trans. Microwave Theory Tech., 2002, vol. 50, p. 721. doi:10.1109/22.989957
  16. Wu J., Yang X., Beguhn, S. Lou J., and Sun N.X. Nonreciprocal Tunable Low-Loss Bandpass Filters With Ultra-Wideband Isolation Based on Magnetostatic Surface Wave. IEEE Trans. Microwave Theory Tech. 2012, vol. 60, p. 3959. doi:10.1109/TMTT.2012.2222661
  17. Harris V.G. Modern Microwave Ferrites. IEEE Trans. Magn., 2012, vol. 48, p. 1075. doi:10.1109/TMAG.2011.2180732
  18. Vugalter G. A. Korovin A.G. Total internal reflection of backward volume magnetostatic waves and its application for waveguides in ferrite films. J. Phys. D: Appl. Phys. 1998, vol. 31, pp. 1309–1319. doi:10.1088/0022-3727/31/11/004
  19. Vugalter G.A., Korovin A.G. Total internal reflection of backward volume magnetostatic waves from the metallized area of ferrite films. Technical Physics Letters, 1989, vol. 15, no. 21, pp. 73–76.
  20. Vashkovsky A. V., Lock E. H. Properties of backward electromagnetic waves and negative reflection in ferrite films. Phys. Usp. 2006, vol. 49, pp. 389–399. doi:10.1070/PU2006v049n04ABEH005807
  21. Madami M., Khivintsev Y., Gubbiotti G., Dudko G., Kozhevnikov A., Sakharov V., Stal’makhov A., Khitun A., and Filimonov Y. Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer. Appl. Phys. Lett., 2018, vol. 113, p. 152403. doi:10.1063/1.5050347
  22. Parekh J.P., Tuan H.S. and Desai A. Theory of MSSW convolution. Proceedings of the IEEE 1987 / Ultrasonics Symposium. Denver. Colorado. USA. 1987, pp. 217–220. doi:10.1109/ULTSYM.1987.198957
  23. Kazakov G.T., Pylaev E.S. Kombinacionnoe preobrazovanie chastoty vstrechnyh magnitostaticheskih voln s vozbuzhdeniem svrhsvetovyh voln namagnichivanija. Pisma v ZhTF, 1983, vol. 9, no. 20, p. 1240 (in Russian). 
  24. Kozhevnikov А.V., Khivintsev Y.V., Sakharov V.К., Dudko G.М., Vysotskii S.L., Nikulin Y.V., Pavlov Е.S., Filimonov Y.А., Khitun А.G. The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, no. 3, pp. 9–32. doi:10.18500/0869-6632-2019-27-3-9-32
  25. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples. J. Appl. Ptys., 1978, vol. 49, pp. 4886–4895. doi:10.1063/1.325522
  26. Dudko G.M., Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V., Vysotskii S.L., Seleznev M.E., Filimonov Y.A., Khitun A.G. Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films. Izvestiya VUZ. Applied nonlinear dynamics, 2019, vol. 27, no. 2, pp. 39–60. doi:10.18500/0869-6632-2019-27-2-39-60
  27. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. Springer Science+Business Media, LLC 2009. LCCN: 2008936559. 354 p. https://doi.org/10.1007/978-0-387-77865-5
  28. Mednikov A.M. Nelineynyye effekty pri rasprostranenii poverkhnostnykh spinovykh voln v plenkakh YIG. FTT, 1981, vol. 23, iss. 1, pp. 242–245 (in Russian).
  29. Temiryazev A.G. Mekhanizm preobrazovanija poverhnostnoj magnitostaticheskoj volny v uslovijah trehmagnonnogo raspada. FTT, 1987, vol. 29, iss. 2, pp. 313–319 (in Russian).
  30. Polzikova N.I., Raevskii A.O., Temiryazev A.G. Vlilanie obmennogo vzaimodejstvija na granitsu trehmagnonnogo raspada volny Damona–Eshbacha v tonkih plenkah YIG. FTT, 1984, vol. 26, iss. 11, pp. 3506–3508 (in Russian).
  31. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State (Springer), 1997, vol. 39, iss. 2, pp. 288–295.
  32. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrie films. Journ. of Exper. and Theor. Phys. (AIP), 1999, vol. 88, no. 1, pp. 174–181. doi:10.1134/1.558780
  33. Melkov G.A., Sholom S.V. Parametric excitation of spin waves by a surface magnetostatic wave. Sov. Phys. JETP (AIP), 1989, vol. 69, no. 2, p. 403.
  34. Vashkovskiy A.V., Stal’makhov V.S., Sharayevskiy Yu.P. Magnitostaticheskiye volny v elektronike sverkhvysokikh chastot. Izdatel’stvo Saratovskogo Universiteta, 1993. 311 p. (in Russian).
  35. L’vov V.S. Nelineynyye spinovyye volny. M.: Nauka, 1987. 270 p. (in Russian)
  36. Demokritov S.O., Demidov V.E., Dzyapko O., Melkov G.A., Serga A.A., Hillebrands B., Slavin A.N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature V., 2006, vol. 443, pp. 430–433. doi:10.1038/nature05117
  37. Bir A.S., Grishin S.V. Generation of dark multisoliton complexes in a magnonic ring resonator with dispersion management and competing nonlinear spin-wave interactions. Pis’ma v Zh. Eksper. ` Teoret. Fiz., 2019, vol. 110, iss. 5, pp. 348–353. doi:10.1134/S0370274X19170120  
Received: 
10.12.2019
Accepted: 
05.02.2020
Published: 
30.04.2020