ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Shirokov A. P. Comparative analysis of approximate and precise mapping for a «bouncing ball». Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 5, pp. 72-81. DOI: 10.18500/0869-6632-2000-8-5-72-81

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Comparative analysis of approximate and precise mapping for a «bouncing ball»

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Shirokov Andrei Petrovich, Saratov State University
Abstract: 

Approximate and precise mappings for a bouncing ball are presented. The results of comparison of dynamics showed by these mappings are given: phase portraits,
dynamical regimes topography charts, bifurcation parameter values etc. It is shown that the mapping of a bouncing ball in its traditional form occupies an intermediate position
between the physically motivated and formal models, and т certain areas of parameter space it should be regarded as a formal model.

Key words: 
Acknowledgments: 
The work was supported by the RFBR № 00-02-17509.
Reference: 
  1. Fermi Е. Оn the origin of the cosmic radiation. Phys. Rev. 1949;75(8):1169-1174. DOI: 10.1103/PhysRev.75.1169.
  2. Lichtenberg АJ, Lieberman MA. Regular and Stochastic Motion.  New York: Springer; 1983. 499 p. DOI: 10.1007/978-1-4757-4257-2.
  3. Lieberman MA, Lichtenberg АJ. Stochastic and adiabatic behavior оf particles accelerated by periodic forces. Phys.Rev. A. 1972;5(4):1852-1866. DOI: 10.1103/PhysRevA.5.1852.
  4. Tufillaro NB, Albano AM. Chaotic dynamics of a bouncing ball. Am. J. Phys. 1986;54(10):939-944. DOI: 10.1119/1.14796.
  5. Roshchupkin AS, Krainov VP. The Ulam problem and the ionization of Rydberg atoms by microwave radiation. J. Exp. Theor. Phys. 1998;87(1):20-24. DOI: 10.1134/1.558625.
  6. Zaslavsky M. Classical and quantum localization and delocalization in the Fermi acclelerator, kicked rotor and two—sided kicked rotor models. Chaos. 1996;6(2):184-192. DOI: 10.1063/1.166163.
  7. Lopac V, Dananic V. Energy conservation and chaos in the gravitationally driven Fermi oscillator. Am. J. Phys. 1998;66(10):892-902. DOI: 10.1119/1.18979.
  8. Zaslavsky GM. Stochasticity of dynamic systems. M.: Nauka; 1984. 270 p.
  9. Moon FC. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Weinheim: Wiley;1987. 309 p.
  10. Guckenheimer J, Holmes Р. Nonlinear oscillations, dynamical systems, аnd bifurcations of vector fields. New York: Springer; 1997. 462 p.
  11. Greene JM, MacKay RS, Vivaldi F, Feigenbaum MJ. Universal behaviour in families of area-preserving maps. Physica D. 1981;3(3):468-486. DOI: 10.1016/0167-2789(81)90034-8.
Received: 
24.04.2000
Accepted: 
27.09.2000
Published: 
07.02.2001