ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Astafyeva N. M. Wavelet analysis: local inhomogeneities spectral analysis (fundamental properties and applications). Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 2, pp. 3-39.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
551(551.2+583.1), 621.317

Wavelet analysis: local inhomogeneities spectral analysis (fundamental properties and applications)

Autors: 
Astafyeva Natalia Mikhailovna, Lomonosov Moscow State University
Abstract: 

We present е wavelet transform as а mathematical method which is well suited for studying the local scaling and spectral properties of complex natural, experimental and numerical data. Set of examples have been included to illustrate the potential of wavelets for different signals analysing: the model time series (harmonic, with singularities, fractal) and the geophysical natural time series. We have analysed the features of ENSO - global process in ocean-atmosphere system which has direct bearing on climat.

Key words: 
Acknowledgments: 
The work was supported by the RFBR N 93-01-17342.
Reference: 
  1. Grossmann А, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984;15(4):723-736. DOI: 10.1137/0515056.
  2. Combes JM, Grossmann A, Tchamitchian P, editors. Wavelets. Berlin: Springer; 1990. 331 p. DOI: 10.1007/978-3-642-75988-8.
  3. Ruskai MB. Wavelets and Their Applications. Burlington: Jones and Barlett; 1992. 474 p.
  4. Chui CK. Wavelet Analysis and Its Applications. Vol. l. An introduction to wavelets. San Diego: Academic Press; 1992. 266 p. Chui CK. Wavelet Analysis and Its Applications. Vol.2. Wavelets: A tutorial in theory and applications. San Diego: Academic Press; 1992. 723 р.
  5. Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 1988;41(7):909-996. DOI: 10.1002/cpa.3160410705. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IЕЕЕ Trans. Inform. Theory. 1990;36(5):961-1005. DOI: 10.1109/18.57199. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM; 1992. 357 p.
  6. Farge M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 1992;24(1):395-458. DOI: 10.1146/annurev.fl.24.010192.002143.
  7. Frik PG. Wavelet - analysis and hierarchical models of turbulence. Preprint. Perm: Institute of Solid Media Mechanics; 1992. 39 p.
  8. Paul Т. Function analitic on half-plane as quantum mechanical states. J. Math. Phys. 1984;25(11):3252-3263. DOI: 10.1063/1.526072.
  9. Mallat SG. Multiresolution approximation and wavelet orthonormal bases оf L^2 (R). Trans. Amer. Math. Soc. 1989;315:69-87. DOI: 10.1090/S0002-9947-1989-1008470-5. Mallat SG. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Anal. Mach. Int. 1989;31(7):674-693. DOI: 10.1109/34.192463.
  10. Lemarie PG, Meyer У. Ondelettes et bases hilbertinennes. Rev. Math. Ibero-Americana. 1986;2:1-18. DOI: 10.4171/rmi/22.
  11. Battle G. A block spin construction of ondelettes. Part 1. Lemarie functions. Commun. Math. Phys. 1987;110:601-615. DOI: 10.1007/BF01205550.
  12. Astafyeva NM, Pokrovskaya NV, Sharkov EA. Hierarchical structure of global tropical cyclogenesis. Earth Exploration from Space. 1994;2:14-23. Astafyeva NM, Pokrovskaya NV, Sharkov EA. Large-scale properties of global tropical cyclogenesis. Doklady Physics. 1994;337(4):85-88.
  13. Beylkin G, Coifiman R, Rekhlin V. Fast wavelet transforms and numerical algorithms. Comm. Pure Appl. Math. 1991;44(2):141-183. DOI: 10.1002/cpa.3160440202.
  14. Holschneider M. On the wavelet transformation of fractal objects. J. Stat. Phys. 1988;50:963-993. DOI: 10.1007/BF01019149.
  15. Arneodo А, Grasseau G, Holschneider M. Wavelet transform of multifractals. Phys. Rev. Lett. 1988;61(20):2281-2284. 10.1103/PhysRevLett.61.2281.
  16. Collineau S, Brunet Y. Detection on turbulent coherent motions in a forest canopy. Part 1. Wavelet analysis. Boundary-Layer Meteorol. 1993;65:357-379. DOI: 10.1007/BF00707033.
  17. Astafyeva NM. Wavelet transformation; main properties and application examples. Preprint No. 1891 Space Research Institute AS. Moscow; 1994. 57 p.
  18. Wyrtki K. El-Nino - the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J. Phys. Oceanogr. 1975;5(4):572. DOI:  10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.
  19. MacKenzie D. How the Pacific drains the Nile. New Scientist. 1987;116(1556):15-17.
  20. Wang Shaowu. Reconstruction of E1-Nino event chronology for the last 600 years period. Acta Meteorologica Sinica. 1992;6(1):47-57.
  21. Sidorenkov IS. Characteristics of the phenomenon of the Southern El Niño Oscillation. Works Of The Hydrometeorological Of The USSR. 1991;316:31.
  22. Astafyeva NM, Sonechkin LM. Multiscale analysis of the Southern Oscillation Index. Doklady Earth Sci. 1995;344(4):1-4.
  23. Enfield DB, Cids L. Statistical analysis of El-Nino/Southern Oscillation over the last 500 year. TOGA Notes. 1990;1:1.
  24. Currie RG. Periodic (18.6-year) and cyclic (11-year) induced drought and flood in western North America. J. Geophys. Res.: Atm. 1984;89(D5):7215-7230. DOI: 10.1029/JD089iD05p07215.
  25. Quinn WH, Neal VT, Antunez Dе Mayolo SE. El-Nino occurences over the last four and а half centuries. J. Geophys. Res.: Atm. 1987;92(С13):14449-14461. DOI: 10.1029/jc092ic13p14449.
  26. Haudler R, Andsager K. Volcanic aerosol, El-Nino and Southern Oscillation. Inter. J. Climato. 1990;10(4):413-424. DOI: 10.1002/joc.3370100409.
  27. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924.
Received: 
25.12.1995
Accepted: 
23.05.1996
Published: 
21.07.1996