ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Samoylenko K. D., Mitrofanova A. Ю., Safin A. R., Nikitov S. A. Influence of the topology of coupled antiferromagnetic oscillators on their mutual synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 3, pp. 307-321. DOI: 10.18500/0869-6632-003154, EDN: JVIJVU

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Influence of the topology of coupled antiferromagnetic oscillators on their mutual synchronization

Autors: 
Samoylenko Kristina Dmitrievna, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Mitrofanova Anastasia Юрьевна, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Safin Ansar Rizaevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Nikitov Sergej Apollonovich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Abstract: 

The purpose the purpose of this study is to mathematically describe an ensemble of oscillators coupled by a common dipole field, to model and study the synchronization of the three topologies under consideration: a ring, a grid, and a special case of a lattice-chain, with subsequent identification of a priority topology that would ensure synchronization over a larger range of initial conditions of the ensemble.

Methods. To simplify the numerical modeling and study the synchronization of systems of antiferromagnetic oscillators coupled by a common dipole field, the Kuramoto model for coupled oscillators, as well as the order parameter and its average value, were used.

Results. A mathematical model for antiferromagnetic oscillators coupled by a common dipole field was obtained for three topologies: ring, grid, and chain. Using the Kuramoto model of coupled oscillators and the order parameter and its average value, the synchronization of the considered arrays was studied, and it was found that the lattice is the preferred topology for the same ensemble parameters.

Conclusion. The paper studies the problem of synchronization of ensembles of antiferromagnetic spin-Hall oscillators (AFM SCHO) combined into different topologies: ring, grid and chain. It is shown that the grid is the most preferable topology for achieving synchronization at lower values of the coupling strength constant between the moscillators. The ring and chain require higher values of the coupling strength constant, which is their disadvantage. Nevertheless, with a sufficiently strong coupling, synchronization is also possible in these topologies.
 

Acknowledgments: 
This work was supported by Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2024-538).
Reference: 
  1. Kim SK, Beach GS, Lee KJ, Ono T, Rasing T, Yang H. Ferrimagnetic spintronics. Nat. Mater. 2022;21(1):24–34. DOI: 10.1038/s41563-021-01139-4.
  2. Kim KW, Park BG, Lee KJ. Spin current and spin-orbit torque induced by ferromagnets. npj Spintronics. 2024;2(1):8. DOI: 10.1038/s44306-024-00010-x.
  3. Gomonay O, Baltz V, Brataas A, Tserkovnyak Y. Antiferromagnetic spin textures and dynamics. Nature Phys. 2018;14(3):213–216. DOI: 10.1038/s41567-018-0049-4.
  4. Han J, Cheng R, Liu L, Ohno H, Fukami S. Coherent antiferromagnetic spintronics. Nat. Mater. 2023;22(6):684–695. DOI: 10.1038/s41563-023-01492-6.
  5. Ivanov BA Spin dynamics for antiferromagnets and ultrafast spintronics. J. Exp. Theor. Phys. 2020;131(1):95–112. DOI: 10.1134/S1063776120070079.
  6. Zhang W, Jungfleisch MB, Jiang W, Pearson JE, Hoffmann A, Freimuth F, Mokrousov Y. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 2014;113(19):196602. DOI: 10.1103/ PhysRevLett.113.196602.
  7. Puliafito V, Khymyn R, Carpentieri M, Azzerboni B, Tiberkevich V, Slavin A, Finocchio G. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Phys. Rev. B. 2019;99(2):024405. DOI: 10.1103/PhysRevB.99.024405.
  8. Cheng R, Xiao D, Brataas A Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 2016;116(20):207603. DOI: 10.1103/PhysRevLett.116.207603.
  9. Safin A, Puliafito V, Carpentieri M, Finocchio G, Nikitov S, Stremoukhov P, Kirilyuk AI, Tyberkevych V, Slavin AN. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 2020;117(22):222411. DOI: 10.1063/5.0031053.
  10.  Sulymenko O, Prokopenko O, Lisenkov I, Akerman J, Tyberkevych V, Slavin AN, Khymyn R. Ultra-fast logic devices using artificial “neurons” based on antiferromagnetic pulse generators. J. Appl. Phys. 2018;124(15):152115. DOI: 10.1063/1.5042348.
  11.  Mitrofanova AYu, Safin AR, Kravchenko OV. Neuromorphic computing based on an antiferromagnet-heavy metal hybrid structure under the action of laser pulses. J. Phys.: Conf. Ser. 2021;2127(1):012023. DOI: 10.1088/1742-6596/2127/1/012023.
  12.  Tsunegi S, Taniguchi T, Lebrun R, Yakushiji K, Cros V, Grollier J, Fukushima A, Yuasa S, Kubota H. Scaling up electrically synchronized spin torque oscillator networks. Sci. Rep. 2018;8(1):13475. DOI: 10.1038/s41598-018-31769-9.
  13.  Dieny B, Prejbeanu IL, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov SO, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak AV, Hirohata A, Mangin S, Valenzuela SO, Onbasl MC, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020;3(8):446–459. DOI: 10.1038/s41928-020-0461-5.
  14.  Sulymenko OR, Prokopenko OV, Tiberkevich VS, Slavin AN, Ivanov BA, Khymyn RS. Terahertzfrequency spin Hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Applied. 2017;8(6):064007. DOI: 10.1103/PhysRevApplied.8.064007.
  15.  Khymyn R, Lisenkov I, Tiberkevich V, Ivanov BA, Slavin A. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 2017;7(1):43705. DOI: 10.1038/ srep43705.
  16.  Dyakonov M. Magnetoresistance due to edge spin accumulation. Phys. Rev. Lett. 2007;99(12): 126601. DOI: 10.1103/PhysRevLett.99.126601.
  17.  Hoffmann A. Spin Hall effects in metals. IEEE Trans. Magnetics. 2013;49(10):5172–5193. DOI: 10.1109/TMAG.2013.2262947.
  18.  Taniguchi T. Magnetoresistance originated from charge-spin conversion in ferromagnet. AIP Advances. 2018;8(5):055916. DOI: 10.1063/1.5003397.
  19.  Safin AR, Nikitov SA. Nonlinear Dynamics of an Antiferromagnetic Spintronic Oscillator. Radiophys. Quantum Electron. 2019;61(11):834–840. DOI: 10.1007/s11141-019-09940-7.
  20.  Hong H, Park H, Choi MY. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Phys. Rev. E. 2005;72(3):036217. DOI: 10.1103/PhysRevE. 72.036217.
  21.  Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960; 120(1):91–98. DOI: 10.1103/PhysRev.120.91.
  22.  Dzyaloshinskiy IE Thermodynamical Theory of “Weak” Ferromagnetism in Antiferromagnetic Substances. Sov. Phys. JETP. 1957;5(6):1259–1272.
  23.  Ozhogin VI, Preobrazhenskii VL. Effective anharmonicity of elastic subsystem in antiferromagnets. Physica B+C. 1977;86–88:979–981. DOI: 10.1016/0378-4363(77)90768-9.
  24.  Zvezdin AK. Dynamics of domain walls in weak ferromagnets. JETP Lett. 1979;29:553-557.
  25.  Ivanov BA, Lapchenko VF, Sukstanskii AL. Surface spin waves in antiferromagnets. Sov. Phys. Solid State. 1985;27:101.
  26.  Acebron JA, Bonilla LL, P  erez Vicente CJ, Ritort F, Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005;77(1):137–185. DOI: 10.1103/ RevModPhys.77.137.
  27.  Rodrigues FA, Peron TKD, Kurths PJ. The Kuramoto model in complex networks. Phys. Rep. 2016;610:1–98. DOI: 10.1016/j.physrep.2015.10.008.
  28.  Garg N, Bhotla SVH, Muduli PK, Bhowmik D. Kuramoto-model-based data classifi-cation using the synchronization dynamics of uniform-mode spin Hall nano-oscillators. Neuromorph. Comput. Eng. 2021;1(2):024005. DOI: 10.1088/2634-4386/ac3258.
  29.  Pikovsky A, Rosenblum M. Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys. Rev. Lett. 2008;101(26):264103. DOI: 10.1103/PhysRevLett.101.264103.
  30.  Mitrofanova AYu, Safin AR, Kravchenko OV, Nikitov SA. Mutual synchronization of antiferromagnetic spintronic oscillators. Journal of the Russian Universities. Radioelectronics. 2022;25(5): 80–90 (in Russian). DOI: 10.32603/1993-8985-2022-25-5-80-90.
  31.  Shakhgildyan VV, Lyakhovkin AA. Phase-Locked Frequency Control Systems. M.: Svyaz; 1972. 447 p. (in Russian).
  32.  Trees BR, Saranathan V, Stroud D. Synchronization in disordered Josephson junction arrays: Smallworld connections and the Kuramoto model. Phys. Rev. E. 2005;71(1):016215. DOI: 10.1103/ PhysRevE.71.016215.
  33.  Frank TD, Richardson MJ. On a test statistic for the Kuramoto order parameter of synchronization: An illustration for group synchronization during rocking chairs. Physica D. 2010;239(23–24): 2084–2092. DOI: 10.1016/j.physd.2010.07.015.
Received: 
22.08.2024
Accepted: 
21.10.2024
Available online: 
07.12.2024
Published: 
30.05.2025