For citation:
Kashchenko S. A. Local dynamics of aperiodic chains with unidirectional couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 9-33. DOI: 10.18500/0869-6632-003197, EDN: KBINPI
Local dynamics of aperiodic chains with unidirectional couplings
Chains of N unidirectionally coupled nonlinear first-order equations are considered, where the value of the last element is determined through the first element of the chain. The aim of this work is to investigate the local – in the neighborhood of the zero equilibrium state – dynamics of this system. Critical cases in the problem of equilibrium state stability are identified, and normal forms determining the local behavior of solutions are constructed. A detailed analysis is performed in the simplest cases, where N = 2 and N = 3. The most interesting part of the research concerns the case where the value of N is sufficiently large. It is shown that the critical cases then have infinite dimension.
Methods. The standard research scheme, based on the use of the method of local invariant manifolds and the method of normal forms, turns out to be inapplicable. A special method of infinite-dimensional normalization developed by the author is used. The main results consist in the construction of so-called quasi-normal forms – analogs of normal forms for the infinite-dimensional case. It is important to emphasize that even for sufficiently large values of the number of chain elements N, the quasi-normal forms determining the dynamics of the original system significantly depend on variations in the value of N. Note that for certain values of the system coefficients, its dynamics can be quite complex.
- Kuznetsov AP, Kuznetsov SP, Sataev IR, Turukina L V. About Landau-Hopf scenario in a system of coupled self-oscillators. Physics Letters A. 2013;377(45-48):3291-3295. 10.1016/j.physleta.2013.10.01310.1016/j.physleta.2013.10.013.
- Osipov GV, Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization effects in a lattice of nonidentical R"ossler oscillators. Phys. Rev. E. 1997;55(3):2353-2361. 10.1103/physreve.55.235310.1103/physreve.55.2353.
- Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press; 2001. 411 p.
- Dodla R, Sen A, Johnston G L. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Phys. Rev. E. 2004;69(5):056217. 10.1103/PhysRevE.69.05621710.1103/PhysRevE.69.056217.
- Williams CRS, Sorrentino F, Murphy TE, Roy R. Synchronization states and multista-bility in a ring of periodic oscillators: Experimentally variable coupling delays. Chaos. 2013;23(4):043117. DOI: 10.1063/1.4829626.
- Rao R, Lin Z, Ai X, Wu J. Synchronization of epidemic systems with Neumann boundary value under delayed impulse. Mathematics. 2022;10(12):2064. DOI: 10.3390/math10122064.
- Van der Sande G, Soriano MC, Fischer I, Mirasso C R. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Phys. Rev. E. 2008;77(5):055202. DOI: 10.1103/PhysRevE.77.055202.
- Klinshov VV, Nekorkin V I. Synchronization of delay-coupled oscillator networks. Phys. Usp. 2013;56(12):1217-1229. DOI: 10.3367/UFNe.0183.201312c.1323.
- Heinrich G, Ludwig M, Qian J, Kubala B, Marquardt F. Collective dynamics in opto-mechanical arrays. Phys. Rev. Lett. 2011;107(4):043603. DOI: 10.1103/PhysRevLett.107.043603.
- Zhang M, Wiederhecker GS, Manipatruni S, Barnard A, McEuen P, Lipson M. Synchro-nization of micromechanical oscillators using light. Phys. Rev. Lett. 2012;109(23):233906. 10.1103/PhysRevLett.109.23390610.1103/PhysRevLett.109.233906.
- Lee TE, Sadeghpour H R. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Phys. Rev. Lett. 2013;111(23):234101. DOI: 10.1103/PhysRevLett.111.234101.
- Yanchuk S, Wolfrum M. Instabilities of stationary states in lasers with long-delay optical feedback. SIAM J. Appl. Dyn. Syst. 2012;9(2):519-535. DOI: 10.20347/WIAS.PREPRINT.962.
- Grigorieva EV, Haken H, Kashchenko S A. Complexity near equilibrium in model of lasers with delayed optoelectronic feedback. In: 1998 International Symposium on Nonlinear Theory and its Applications. 14-17 September, 1998, Crans-Montana, Switzerland. NOLTA Society; 1998. P. 495-498.
- Kashchenko S A. Quasinormal forms for chains of coupled logistic equations with delay. Mathema-tics. 2022;10(15):2648. DOI: 10.3390/math10152648.
- Kashchenko S A. Dynamics of a chain of logistic equations with delay and antidiffusive coupling. Dokl. Math. 2022;105:18-22. DOI: 10.1134/S1064562422010069.
- Thompson JMT, Stewart H B. Nonlinear Dynamics and Chaos. New York: Wiley; 2002. 458 p.
- Kashchenko S A. Dynamics of advectively coupled Van der Pol equations chain. Chaos. 2021;31(3):033147. DOI: 10.1063/5.0040689.
- Kanter I, Zigzag M, Englert A, Geissler F, Kinzel W. Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. Europhysics Letters. 2011;93(6):60003. DOI: 10.1209/0295-5075/93/60003.
- Rosin DP, Rontani D, Gauthier DJ, Scholl E. Control of synchronization patterns in neural-like Boolean networks. Phys. Rev. Lett. 2013;110(10):104102. DOI: 10.1103/PhysRevLett.110.104102.
- Yanchuk S, Perlikowski P, Popovych OV, Tass P A. Variability of spatiotemporal patterns in non-homogeneous rings of spiking neurons. Chaos. 2011;21(4):047511. DOI: 10.1063/1.3665200.
- Klinshov V, Nekorkin V. Synchronization in networks of pulse oscillators with time-delay coupling. Cybern. Phys. 2012;1(2):106-112.
- Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: Universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 2017;89(4):045001. 10.1103/RevModPhys.89.04500110.1103/RevModPhys.89.045001.
- Klinshov V, Shchapin D, Yanchuk S, Wolfrum M, D'Huys O, Nekorkin V. Embedding the dynamics of a single delay system into a feed-forward ring. Phys. Rev. E. 2017;96(4):042217. DOI: 10.1103/PhysRevE.96.042217.
- Karavaev AS, Ishbulatov YuM, Kiselev AR, Ponomarenko VI, Prokhorov MD, Mironov SA, Schwartz VA, Gridnev VI, Bezruchko B P. Model of the human cardio-vascular system with an autonomous regulation circuit of mean arterial pressure. Human Physiology. 2017;43(1):70-80. DOI: 10.1134/S0362119716060098.
- Kashchenko A A. Dependence of the dynamics of a model of coupled oscillators on the number of oscillators. Dokl. Math. 2021;104(3):355-359. DOI: 10.1134/S1064562421060090.
- Kashchenko A A. Relaxation modes of a system of diffusion coupled oscillators with delay. Com-munications in Nonlinear Science and Numerical Simulation. 2021;93(6):105488. 10.1016/j.cnsns.2020.10548810.1016/j.cnsns.2020.105488.
- Kashchenko S A. Dynamics of chains of many oscillators with unidirectional and bidirectional delay coupling. Comput. Math. and Math. Phys. 2023;63(10):1817-1836. 10.1134/S096554252309010510.1134/S0965542523090105.
- Hartman P. Ordinary Differential Equations. New York: Wiley; 1964. 612 p.
- Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer; 1981. 352 p. DOI: 10.1007/BFb0089647.
- Kaschenko S A. Normalization in the systems with small diffusion. Int. J. Bifurc. Chaos. 1996;6(6):1093-1109. DOI: 10.1142/S021812749600059X.
- Grigorieva EV, Kashchenko S A. Local dynamics of a model of a chain of lasers with optoelectronic delayed unidirectional coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(2):189-207 (in Russian). DOI: 10.18500/0869-6632-2022-30-2-189-207.
- Klinshov V V. Collective dynamics of networks of active elements with impulsive connections: Review. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(5):465-490 (in Russian).
- Akhromeeva TS, Kurdyumov SP, Malinetskii GG, Samarskii A A. Nonstationary Structures and Diffusion Chaos. M.: Nauka; 1992. 544 p.
- 386 reads