ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Обзоры актуальных проблем нелинейной динамики

Chaos and nonintegrability in hamiltonian systems

The article is devoted to historical development of one key aspect of Hamiltonian systems – nonintegrability, and its relation with chaotic behavior of the system. Evolution from the concept of quite integrable system to partly integrable one is shown. The relation of nonintegrability with such fundamental concepts as Kolmogorov stability, systems with divided phase space, Arnold di?usion, Zaslavsky web and others is discussed.

Autonomous systems with quasiperiodic dynamics examples and their properties: review

The paper is a review of well-known in nonlinear dynamics models with low dimensional of phase space and quasiperiodic behavior. Also new results related to analysis of many-frequencies quasiperiodic oscillations for models with external action and coupled oscillators are discussed. Download full version

Hyperbolic strange attractors of physically realizable systems

A review of studies aimed on revealing or constructing physical systems with hyperbolic strange attractors, like Plykin attractor and Smale–Williams solenoid, is presented. Examples of iterated maps, differential equations, and simple electronic devices with chaotic dynamics associated with such attractors are presented and discussed. A general principle is considered and illustrated basing on manipulation of phases in alternately excited oscillators and time­delay systems.

Spectral problems for the perron–frobenius operator

A method of solving the spectral problem for the Perron–Frobenius operator of onedimensional piece­wise linear chaotic maps is demonstrated. The method is based on introducing generating functions for the eigenfunctions of the operator. It is shown that the behavior of autocorrelation functions for chaotic maps depends on eigenvalues of the Perron­Frobenius operator.

Patterns in excitable dynamics driven by additive dichotomic noise

Pattern formation due the presence of additive dichotomous fluctuations is studied an extended system with diffusive coupling and a bistable FitzHugh–Nagumo kinetics. The fluctuations vary in space and/or time being noise or disorder, respectively. Without perturbations the dynamics does not support pattern formation. With proper dichotomous fluctuations, however, the homogeneous steady state is destabilized either via a Turing instability or the fluctuations create spatial nuclei of an inhomogeneous states.

Fractional diffusion equation for aging and equilibrated random walks

We consider continuous time random walks and discuss situations pertinent to aging. These correspond to the case when the initial state of the system is known not at preparation (at t = 0) but at the later instant of time t1 > 0 (intermediate­time initial condition).

Entropy and forecasting of time series in the theory of dynamical systems

A contemporary consideration of such concepts as dimension and entropy of dynamical systems is given. Description of these characteristics includes into the analysis the other notions and properties related to complicated behavior of nonlinear systems as embedding dimension, prediction horizon etc., which are used in the paper. A question concerning the application of these ideas to real observables of the economical origin, i.e. market prices of the companies Schlumberger, Deutsche Bank, Honda, Toyota, Starbucks, BP is studied.

Self-­sustained oscillations in quasiharmonic and chaotic oscillators in the presence of fluctuations

The paper presents the results of the classical theory of fluctuations in the quasiharmonic van der Pol oscillator. Stochastic equations for amplitude and phase of selfsustained oscillations are formulated and then their solutions are analyzed. The autocorrelation function and power spectrum of noisy self­sustained oscillations are studied. Then the spectral and correlations characteristics of chaotic self­sustained oscillations are numerically analyzed in spiral chaos oscillators.

Ultrawideband wireless sensor networks based on chaotic radiopulses

Wireless sensor networks that is a fast emerging branch of modern telecommunications are considered in this paper. Particular attention is paid on ultrawideband sensor networks where chaotic radiopulses are used as an information carrier between sensor nodes. Development of such wireless sensor networks became possible after long­term investigations of chaotic oscillations and chaos control.

Two-stream instability – linear and nonlinear microwave phenomena

This article is the first of two parts of the review devoted to the phenomenon of two-beam instability in microwave electronics. The main goal is to cover as much as possible the most complete list of papers on various models and methods of analysis of the two-beam instability. The first part contains papers which, in our view, most fully describe the development of ideas of two-stream instability in microwave electronics.