Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Детерминированный хаос

Управление хаосом в системе икеды пространственно-временная модель

Метод управления хаосом в кольцевом резонаторе, содержащем среду с кубической фазовой нелинейностью (система Икеды), предложенный в работе [1], рассматривается в рамках распределенной пространственно-временной модели, которая описывается нелинейным уравнением Шрёдингера с граничным условием, содержащим запаздывание. Приведены результаты численного моделирования, подтверждающие эффективность предложенного метода. В случае, когда дисперсия нелинейной среды мала, полученные результаты хорошо согласуются с приближенной теорией, основанной на точечном отображении [1].

Гиперболический хаос в нелинейно связанных осцилляторах ландау–стюарта с медленной модуляцией параметров

Рассмотрена хаотическая динамика системы, состоящей из четырех нелинейно связанных идентичных осцилляторов типа Ландау–Стюарта. Осцилляторы возбуждаются поочередно парами, в силу периодического изменения параметра, ответственного за бифуркацию рождения предельного цикла. Показано, что в зависимости от выбора вида связи между осцилляторами в сечении Пуанкаре для разности фаз парных осцилляторов получаются разные варианты отображения типа отображения Бернулли.

Диффузия Арнольда в простой нелинейной системе: аналитические оценки и численное моделирование

Настоящая работа посвящена изучению диффузии Арнольда в системе с 2.5 степенями свободы вдоль резонанса с внешним переменным полем. Сделанная аналитическая оценка коэффициента диффузии хорошо согласуется с результатами численного моделирования. Показано, что на проявление и скорость диффузии Арнольда влияет как амплитуда внешнего поля, так и параметр, отвечающий за слабое взаимодействие двух пространственных степеней свободы.

Влияние перемешивания и диффузии на пространственно-временную динамику в стохастической системе лотки–вольтерры с дискретным фазовым пространством

В работе рассматривается влияние диффузии и перемешивания на динамику стохастической системы Лотки–Вольтерры. Моделирование осуществляется с помощью метода Монте-Карло. Показывается, что локальная диффузия сильно изменяет динамику модели, ускоряя процессы взаимодействий на решетке, а перемешивание приводит к появлению глобальных периодических колебаний. Выясняется, что рождение глобальных колебаний происходит благодаря явлению фазовой синхронизации.

Определение инвариантной плотности отображения Реньи на основе Гауссова подхода

Построены конечномерные инвариантные функциональные подпространства для оператора Перрона–Фробениуса хаотического отображения Реньи xn+1 = bxn mod 1, где 1 < b < 2. Показано, что инвариантная плотность этого отображения в виде конечной линейной комбинации индикаторных функций частичных отрезков, вложенных в единичный сегмент по специальному правилу, может быть определена в результате повторных действий оператора Перрона–Фробениуса данного отображения на плотность равномерного распределения (прием Гаусса).

Конкуренция перемежаемостей

В работе изучены перемежаемые режимы в двупараметрическом семействе одномерных отображений при наличии нейтрально неустойчивой неподвижной точки на границе фазового пространства. Построена фазовая диаграмма в пространстве параметров, определяющая возможные сценарии перехода к хаосу с изменением параметров. Обнаружен необычный режим конкуренции перемежаемостей, изучены функции распределения длительности ламинарных фаз, показатель Ляпунова и топологическая энтропия этого семейства отображений.

Сравнительный анализ синхронизации гармоническим и импульсным сигналом на примере системы лоренца

Численно и аналитически исследована синхронизация внешним периодическим воздействием в системе Лоренца. Детально исследовано изменение картины синхронизации при изменении параметра, отвечающего за возникновение в автономной системе хаотического аттрактора.  

Применение непрерывного вейвлет–преобразования для анализа перемежающегося поведения

В данной работе предлагается эффективный метод анализа сигналов при помощи непрерывного вейвлет-преобразования. Рассматривается применение данного метода для определения длительности ламинарных и турбулентных фаз движения для перемежающегося поведения различных типов, включая анализ временных рядов, порожденных живыми системами. Показано, что предложенный метод обладает высокой устойчивостью к шумам и флуктуациям, искажающим исходную временную реализацию.  

Выделение неустойчивых периодических пространственно-временных состояний динамики пространственно распределенной хаотической системы

В работе предложен метод выделения неустойчивых периодических пространственно-временных состояний хаотической динамики пространственно распределенных систем, аналогичных неустойчивым орбитам хаотических аттракторов систем с малым числом степеней свободы. Предложенный метод применен к анализу пространственно-временного хаоса в пучково-плазменной системе со сложным поведением – гидродинамической модели диода Пирса.  

Cпектральный анализ колебаний в системе взаимодействующих хаотических автогенераторов

В статье исследуются спектры колебаний двух взаимодействующих автогенераторов хаоса и их связь с парциальными коэффициентами эффективной диффузии фазы. Прослеживается эволюция спектров и коэффициентов диффузии от несинхронного режима к режиму синхронизации хаоса. Выявлена аналогия между спектральными характеристиками взаимодействующих генераторов детерминированного хаоса и взаимодействующих периодических генераторов с шумом.  

Страницы

Умер Дмитрий Иванович Трубецков. Прощание состоится 14 августа в 11.30 в Актовом зале 10 корпуса СГУ.